Осевое сечение - это сечение геометрической фигуры, плоскость которой проходит через ось данной фигуры. Сечение конуса, которое проходит через его ось - равнобедренный треугольник, потому как образующие образуют боковые стороны этого треугольника. Имеем равнобедренный треугольник ABC: AB = BC = 2*sqrt(3). CO - высота конуса, которая является и медианой, и биссектрисой в равнобедренном треугольнике, опущенная на основу. Следовательно, угол BCO = углу ACO = 60 градусов. Из прямоугольного треугольника BOC: угол CBO = 90 - 60 = 30 градусов. Катет, который лежит против угла 30 градусов, равен половине гипотенузы: OB = CB/2, OB = sqrt(3) = R. Найдем высоту конуса. Из теоремы Пифагора: CO^2 = CB^2 - OB^2, CO^2 = 12 - 3 = 9, CO = 3 см = H. Площадь основания конуса - это площадь окружности: S = pi*R^2, S = 3*pi см^2. Объем конуса равен (S*H)/3, V = (3*3pi)/3 = 3pi см^3.
В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого = 2а , а прилежащий угол = 60 градусов. Диагональ большей боковой грани призмы составляет с плоскостью его основания угол=45 градусов. Найдите объём цилиндра.
Объем цилиндра равен произведению высоты на площадь его основания. V=SH Обратим внмание на то, что в основании призмы лежит прямоугольный треугольник АВС c прямым углом С, катет ВС которого прилежит к углу 60°, следовательно, противолежит углу 30°, и потому гипотенуза АВ этого треугольника равна двум таким катетам. Гипотенуза прямоугольного треугольника - диаметр описанной около него окружности. АВ=2*2а=4а R=4а:2=2а Большая боковая грань - грань, горизонтальными сторонами которой служат диаметры оснований, т.е. грань АВКН. Т.к. диагональ АК большей грани с плоскостью основания составляет угол 45°, треугольник АКВ - прямоугольный равнобедренный, АВ=ВК , высота цилиндра ВК равна диаметру основания и равна 4а. V=SH=πr²Н=π*4а²*4а=16πа³
Объем конуса равен (S*H)/3, V = (3*3pi)/3 = 3pi см^3.
Основанием призмы служит прямоугольный треугольник,
катет которого = 2а , а прилежащий угол = 60 градусов.
Диагональ большей боковой грани призмы составляет с плоскостью его основания угол=45 градусов.
Найдите объём цилиндра.
Объем цилиндра равен произведению высоты на площадь его основания.
V=SH
Обратим внмание на то, что в основании призмы лежит прямоугольный треугольник АВС c прямым углом С, катет ВС которого прилежит к углу 60°, следовательно, противолежит углу 30°, и потому гипотенуза АВ этого треугольника равна двум таким катетам.
Гипотенуза прямоугольного треугольника - диаметр описанной около него окружности.
АВ=2*2а=4а
R=4а:2=2а
Большая боковая грань - грань, горизонтальными сторонами которой служат диаметры оснований, т.е. грань АВКН.
Т.к. диагональ АК большей грани с плоскостью основания составляет угол 45°, треугольник АКВ - прямоугольный равнобедренный, АВ=ВК , высота цилиндра ВК равна диаметру основания и равна 4а.
V=SH=πr²Н=π*4а²*4а=16πа³