1. Все грани куба - квадраты. Тогда ребро куба: а = √9 = 3 см V = a³ = 3 = 27 см³
2. а = 2 см - ребро основания призмы, α = 30° - угол в основании, h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3. В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см. ОС = а√3/3 = 5√3/3 см как радиус описанной окружности. ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO V = 1/3 · a²√3/4 · SO V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³
наименьший угол - тот который лежит против меньшей стороны (9 см)
sin(a) = 9/41
cos(a) = 40/41
tg(a) = 9/40
ctg(a) = 40/9
2.
кос=катет:гипотенуза отсюда следует что катет=косинус*гипотенузу=20*0,8=16(см) по теореме Пифагора находим другой катет: катет(второй) в кв=гипотенуза в кв - катет(первый)в кв=20 в кв - 16 в кв=400-256=144 катет(второй)=12(см)
Все грани куба - квадраты. Тогда ребро куба:
а = √9 = 3 см
V = a³ = 3 = 27 см³
2.
а = 2 см - ребро основания призмы,
α = 30° - угол в основании,
h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3.
В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см.
ОС = а√3/3 = 5√3/3 см как радиус описанной окружности.
ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды
SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO
V = 1/3 · a²√3/4 · SO
V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³
1.
наименьший угол - тот который лежит против меньшей стороны (9 см)
sin(a) = 9/41
cos(a) = 40/41
tg(a) = 9/40
ctg(a) = 40/9
2.
кос=катет:гипотенуза
отсюда следует что катет=косинус*гипотенузу=20*0,8=16(см)
по теореме Пифагора находим другой катет:
катет(второй) в кв=гипотенуза в кв - катет(первый)в кв=20 в кв - 16 в кв=400-256=144
катет(второй)=12(см)
3.
tg(a) = 2.5 / 2.5√(3) = 1 / √(3)
a = arctg(a) = arctg(1 / √(3)) = 30°
tg(B) = 2.5√(3) / 2.5 = √(3)
B = arctg(B) = arctg(√(3)) = 60°