В прямой призме АВСА1В1С1 основание АВС: АВ=АС=10 см; ВС=12 см; АА1=15 см. Найти а) объем призмы б) площадь сечения, проходящего через точку А1 и противоположную ей сторону нижнего основания
Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.
Шеф, здесь собственно как бы нечего решать. Поскольку треугольник одновременно является и прямоугольным, и равнобедренным, то высота, проведённая к гипотенузе равна половине гипотенузы. Просто втыкаешь в формулу h = MK / 2 = 18 / 2 = 9 см - это и есть ответ.
Это свойство такого треугольника вытекает из того факта, что середина гипотенузы, она же точка куда приходит высота, одновременно также является центром описанной окружности, следовательно как половина гипотенузы, так и высота - все они являются радиусами одной и той же окружности, следовательно равны друг другу. Отсюда и использованная формула.
Даны треугольники АВС и А1В1С1 в которых стороны АС и А1С1, высоты ВН и В1Н1 и медианы ВМ и В1М1 равны.
Прямоугольные треугольники НВМ и Н1В1М1 равны по 4-му признаку равенства, так как у них гипотенузы (ВМ и В1М1) и катеты (ВН и В1Н1) равны (дано). => HM=H1M1 и <BMH=<B1M1H1. Значит равны и углы ВМС и В1М1С1 как смежные с равными.
АМ=МС=А1М1=М1С1 как половины равных отрезков АС и А1С1.
Треугольники АВМ и А1В1М1 равны по двум сторонам (АМ=А1М1, ВМ=В1М1) и углу между ними (<BMH=<B1M1H1 - доказано выше) => АВ = А1В1.
Треугольники ВМС и В1М1С1 равны по двум сторонам (МС=М1С1, ВМ=В1М1) и углу между ними (<BMС=<B1M1С1 - доказано выше) => ВС = В1С1.
Тогда треугольники АВС и А1В1С1 равны по трем сторонам, что и требовалось доказать.
Это свойство такого треугольника вытекает из того факта, что середина гипотенузы, она же точка куда приходит высота, одновременно также является центром описанной окружности, следовательно как половина гипотенузы, так и высота - все они являются радиусами одной и той же окружности, следовательно равны друг другу. Отсюда и использованная формула.