В прямой призме АВСА1В1С1 основание АВС: АВ=АС=10 см; ВС=12 см; АА1=15 см. Найти а) объем призмы б) площадь сечения, проходящего через точку А1 и противоположную ей сторону нижнего основания
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.
В треугольнике, где угол 75°, второй равен половине прямого, то есть 45°, третий равен 180 - 75 - 45 = 60°.
Это один из острых углов прямоугольного треугольника.
Второй острый равен 90 - 60 = 30°.
Пусть катет против угла 30° градусов равен x, тогда катет против угла 60° равен x√3 (по тангенсу).
Площадь S = (1/2)x*x√3 = x^2*√3/2.
Приравняем её заданному значению.
x^2*√3/2 = 24*√3,
x^2 = 48,
x = √48 = 4√3. Это величина одного из катетов.
Второй равен 4√3*√3 = 12.
Гипотенуза равна √(4√3)^2 + 12^2) = √(48 + 144) = √192 = 8√3,
ответ: стороны равны 4√3, 12, 8√3.
Параллелограмм — четырехугольник, у которого противоположные стороны попарно параллельны.
Объяснение:
В параллелограмме противоположные стороны равны и противоположные углы равны.
Диагонали параллелограмма точкой пересечения делятся пополам.
Углы, прилежащие к любой стороне, в сумме равны .
Диагонали параллелограмма делят его на два равных треугольника.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: .
Признаки параллелограмма:
Если противоположные стороны четырехугольника попарно параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Если в четырехугольнике диагонали, пересекаясь, точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Середины сторон произвольного (в том числе невыпуклого или пространственного) четырехугольника являются вершинами параллелограмма Вариньона.
Стороны этого параллелограмма параллельны соответствующим диагоналям четырехугольника . Периметр параллелограмма Вариньона равен сумме длин диагоналей исходного четырехугольника, а площадь параллелограмма Вариньона равна половине площади исходного четырехугольника.