Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180 , возьмем такую точку А на меньшей дуге, и на большой точку В , углы AMB+ANB=180 гр , угол В = 180-120=60
угол NBM вписанный и равен половине центрального то есть 120 гр, и через равнобедренный треугольник NOM
Объяснение:
1 -е задание отправили, как я понял. Его решать не надо.
***
2. ABCD - четырехугольник. CD=8 см. AC - диагональ.
По теореме Пифагора
AD=√17²-8²=√289-64=√225=15 см.
***
3. Высота в равнобедренном треугольнике является его медианой и биссектрисой. Следовательно:
АЕ=СЕ=24/2=12см.
Боковая сторона АВ=ВС=√12²+5²=√144+25=√169=13 см.
***
4. ABCD - трапеция. ВЕ и СF высоты Из ΔАВЕ АЕ=√10²-8² =√100-64=√36=6 см.
АЕ=DF=6 см. AD =ВС+2*АЕ=7+2*6= 19 см.
S трапеции =h(a+b)/2=8(7+19)/2=8*26/2 =104 см ².
***
5. Из ΔACD
√(5x)²-x² = 12;
√25x²-x²=12;
√24x²=12;
2x√6=12;
x=√6 см - сторона АВ=CD
AC=5√6 см.
Площадь ΔАВС=S(ABCD)/2=12*√6/2 = 6√6 см ².
С другой стороны SΔABC=AC*BH/2=6√6 см ².
Откуда BH=2S/AC=12√6: 5√6= 2.4 см.
1)
или вот рисунок
Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180 , возьмем такую точку А на меньшей дуге, и на большой точку В , углы AMB+ANB=180 гр , угол В = 180-120=60
угол NBM вписанный и равен половине центрального то есть 120 гр, и через равнобедренный треугольник NOM
найдем по теореме косинусов MN
MN^2 =2*8^2-2*8^2*cos120
MN=√192 = 8√3
2)
площадь ромба
S=d1*d2/2
стало 1.1d1 , другая 0.85d2
S=1.1*0.85*d1*d2/2 = 0.935*d1*d2/2
то есть 1-0,935 = 0,065 уменшиться на 6,5 %