Обозначим четырёхугольник АВСД, центр окружности О. У вписанного четырёхугольника сумма противоположных углов равна 180 градусов. Значит, противоположные углы - это А; С (120°; 60°) и В; Д ( 150°; 30°). Проведём радиусы в вершины. Так как по условию ВС = АВ, то ОВ делит угол в 150° на 2 по 75°. Треугольники ОСВ и ОВА равнобедренные, угол ВАО тоже 75°. Тогда угол ОАД равен 120°-75 = 45°. Угол АОД равен 180°-45°-30° = 105°. Дуга АВС, на которую опирается вписанный угол Д, равна 30*2 = 60°. Так как она делится пополам, то получаем ответ: Дуги равны: АВ = ВС = 30°, АД = 105°, ДОС = 360°-2*30°-105° = 195°.
Точка Е равноудалена от точек А и В, значит АЕ=ВЕ
Р(Δ АВЕ)=АВ+АЕ+ВЕ
40=14+2АЕ ⇒ АЕ=13 см
Из прямоугольного треугольника ADE:
cos ∠ A= AD/AE=7/13
Так как треугольник АВС равнобедренный АВ=ВС, то и углы при основании равны
∠А=∠С
cos∠C=7/13
По теореме косинусов из треугольника ВЕС:
ВЕ²= ЕС² +ВС² - 2·ЕС·ВС·cos ∠C
13²= EC²+14²-2·EC·14·(7/13)
ЕС=х
Решаем квадратное уравнение:
·13х²-196х+351=0
D=(-196)²-4·13·351=38416-18252=20164=142²
x=(196-142)/26 =27/13 или х=(196+142)/26=13
АС=АЕ+ЕС=13+(27/13)=196/13
или
АС=13+13=26
У вписанного четырёхугольника сумма противоположных углов равна 180 градусов.
Значит, противоположные углы - это А; С (120°; 60°) и В; Д ( 150°; 30°).
Проведём радиусы в вершины.
Так как по условию ВС = АВ, то ОВ делит угол в 150° на 2 по 75°.
Треугольники ОСВ и ОВА равнобедренные, угол ВАО тоже 75°.
Тогда угол ОАД равен 120°-75 = 45°.
Угол АОД равен 180°-45°-30° = 105°.
Дуга АВС, на которую опирается вписанный угол Д, равна 30*2 = 60°.
Так как она делится пополам, то получаем ответ:
Дуги равны:
АВ = ВС = 30°,
АД = 105°,
ДОС = 360°-2*30°-105° = 195°.