В равнобедренном треугольнике ABC проведена высота BD к основанию AC. Длина высоты — 6,8 см, длина боковой стороны — 13,6 см. Определи углы этого треугольника.
Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. Опустим перпендикуляры AD и BC из концов отрезка АВ на линию пересечения данных нам взаимно перпендикулярных плоскостей. Угол между прямой АВ и плоскостью b - это угол между прямыми АВ и AC. В прямоугольном треугольнике АСB с прямым углом С (по теореме о трех перпендикулярах) катет ВС, лежащий против угла 30°, равен половине гипотенузы АВ, то есть ВС=0,5*АВ или ВС=а/2. Угол между прямой АВ и плоскостью с - это угол между прямыми АВ и DB. В прямоугольном треугольнике АDB с прямым углом D острые углы равны по 45°, то есть AD=DB , следовательно катет 2DB²=a², отсюда DB=а√2/2. В прямоугольном треугольнике DCB с прямым углом C по Пифагору имеем: DC=√(DB²-BC²) или DC=√(2а²/4-а²/4)=а/2. ответ: искомое расстояние равно а/2. Угол между прямой АВ и плоскостью с - это угол между прямыми АВ и DB. В прямоугольном треугольнике АDB с прямым углом D острые углы равны по 45°, то есть AD=DB , следовательно катет 2DB²=a², отсюда DB=а√2/2. В прямоугольном треугольнике DCB с прямым углом C по Пифагору имеем: DC=√(DB²-BC²) или DC=√(2а²/4-а²/4)=а/2. ответ: искомое расстояние равно а/2.
См. Объяснение
Объяснение:
Угол АСЕ по отношению к треугольнику АВС является внешним углом, который равен сумме углов А и В.
Действительно, так как сумма внутренних углов треугольника равна 180°, то:
∠АСВ = 180° - (∠А +∠В) = 180° - х - уравнение (1)
С другой стороны, так как угол ВСЕ - развёрнуты (равен 180 °), то:
∠АСВ = 180° - (∠АСD +∠DCE) = 180° - у - уравнение (2)
Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.
Опустим перпендикуляры AD и BC из концов отрезка АВ на линию пересечения данных нам взаимно перпендикулярных плоскостей.
Угол между прямой АВ и плоскостью b - это угол между прямыми АВ и AC.
В прямоугольном треугольнике АСB с прямым углом С (по теореме о трех перпендикулярах) катет ВС, лежащий против угла 30°, равен половине гипотенузы АВ, то есть ВС=0,5*АВ или ВС=а/2.
Угол между прямой АВ и плоскостью с - это угол между прямыми АВ и DB.
В прямоугольном треугольнике АDB с прямым углом D острые углы равны по 45°, то есть AD=DB , следовательно катет 2DB²=a², отсюда DB=а√2/2.
В прямоугольном треугольнике DCB с прямым углом C по Пифагору имеем:
DC=√(DB²-BC²) или DC=√(2а²/4-а²/4)=а/2.
ответ: искомое расстояние равно а/2.
Угол между прямой АВ и плоскостью с - это угол между прямыми АВ и DB.
В прямоугольном треугольнике АDB с прямым углом D острые углы равны по 45°, то есть AD=DB , следовательно катет 2DB²=a², отсюда DB=а√2/2.
В прямоугольном треугольнике DCB с прямым углом C по Пифагору имеем:
DC=√(DB²-BC²) или DC=√(2а²/4-а²/4)=а/2.
ответ: искомое расстояние равно а/2.