1. Первоначальные сведения по геометрии появились за 4-5 тысячелетий до наших дней в Древнем Египте. В этих краях ежегодные разливы Нила смывали посевы. Поэтому для того чтобы восстанавливать посевы и уточнять размеры налогов, необходимо было размечать поля и выполнять необходимые подсчёты.
2. Древнегреческие учёные переняли у египтян измерения и учёта земель и назвали эти знания геометрией. "Геометрия" - слово, происходящее от греческих слов "reo" - земля, "метрео" - измерять.
3. Евклид, Пифагор, Мухаммад аль-Хорезми, Ахмад Фергани, Абу Райхан Беруни, Абу Али ибн Сина.
4. Памятник Кок Минор напоминает нам форму цилиндра, а на его поверхности фигуры, похожие на круги, овалы и ромбы.
5. Геометрия изучает пространственные структуры и отношения.
В параллелограмме АВСD треугольники АВС и АСD равны по трем сторонам (АВ=СD и ВС=АD как стороны параллелограмма, а сторона АС - общая). Итак, Sabc=Sacd.
В треугольниках АВС и АСD ВМ и DМ - медианы (так как диагонали параллелограмма в точке пересечения делятся пополам и АМ=МС).
Но медианы делят треугольники на два равновеликих. Значит, Samb=Smbc=Samd=Scmd (так как равные треугольники АВС и АСD делятся также на два равных).
Итак, площадь параллелограмма АВСD равна четырем площадям треугольника АМВ. Или, что одно и то же, площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB. Что и требовалось доказать.
1. Первоначальные сведения по геометрии появились за 4-5 тысячелетий до наших дней в Древнем Египте. В этих краях ежегодные разливы Нила смывали посевы. Поэтому для того чтобы восстанавливать посевы и уточнять размеры налогов, необходимо было размечать поля и выполнять необходимые подсчёты.
2. Древнегреческие учёные переняли у египтян измерения и учёта земель и назвали эти знания геометрией. "Геометрия" - слово, происходящее от греческих слов "reo" - земля, "метрео" - измерять.
3. Евклид, Пифагор, Мухаммад аль-Хорезми, Ахмад Фергани, Абу Райхан Беруни, Абу Али ибн Сина.
4. Памятник Кок Минор напоминает нам форму цилиндра, а на его поверхности фигуры, похожие на круги, овалы и ромбы.
5. Геометрия изучает пространственные структуры и отношения.
Объяснение:
Вроде всё!)
В параллелограмме АВСD треугольники АВС и АСD равны по трем сторонам (АВ=СD и ВС=АD как стороны параллелограмма, а сторона АС - общая). Итак, Sabc=Sacd.
В треугольниках АВС и АСD ВМ и DМ - медианы (так как диагонали параллелограмма в точке пересечения делятся пополам и АМ=МС).
Но медианы делят треугольники на два равновеликих. Значит, Samb=Smbc=Samd=Scmd (так как равные треугольники АВС и АСD делятся также на два равных).
Итак, площадь параллелограмма АВСD равна четырем площадям треугольника АМВ. Или, что одно и то же, площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB. Что и требовалось доказать.