Суміжними називаються два кути, одна сторона яких спільна, а дві інші утворюють пряму, тобто є доповняльними променями.
Сума суміжних кутів дорівнює 180 градусам.
Два суміжних кути утворюють розгорнутий кут.
Якщо два кути рівні, то суміжні з ними кути теж рівні.
Кут, суміжний із прямим кутом, є прямим.
Кут, суміжний з гострим кутом, є тупим.
Кут, суміжний з тупим кутом, є гострим.
Будь-який промінь, що виходить із вершини розгорнутого кута і проходить між його сторонами, поділяє його на два суміжні кути.
Якщо два кути рівні, то суміжні з ними кути також рівні.
Два кути, суміжні з одним і тим же кутом, рівні.
Якщо два суміжні кути рівні, то вони прямі.
Вертикальними називаються два кути, сторони одного з яких є додатковими променями до сторін другого кута.
Вертикальні кути рівні.
При перетині двох прямих утворюються дві пари вертикальних кутів і чотири пари суміжних кутів.
Якщо відомий один із кутів, що утворились при перетині двох прямих, то знайти інші кути можна таким чином: знайти кут, суміжний з даним, враховуючи, що їх сума 180 градусів, після чого знайти кути, вертикальні з відомими, враховуючи, що вертикальні кути рівні.
Запам’ятайте поняття про теорему, аксіому та доведення.
Доведення — міркування про правильність твердження про властивість тієї або іншої геометричної фігури.
Теорема — твердження, яке треба довести.
Аксіома — твердження, що не потребують доведення, і які містяться у формулюваннях основних властивостей найпростіших фігур.
1)Если угол при основании равен 48°, то угол при вершине равен 180°-48°*2=84°. Все углы меньше 90° => треугольник остроугольный.
2) Если два угла равны 25° и 65°, то третий угол равен 180°-25°-65°=90°. Один угол прямой => треугольник прямоугольный.
3) Если сумма двух углов равна 85°, то третий угол равен 180°-85°=95°. Один угол тупой => треугольник тупоугольный.
4) В треугольнике одна сторона в два раза больше двух других => противолежащий этой стороне угол в два раза больше двух других => этот угол прямой => треугольник прямоугольный.
Суміжні та вертикальні кути, їх властивості
Суміжними називаються два кути, одна сторона яких спільна, а дві інші утворюють пряму, тобто є доповняльними променями.
Сума суміжних кутів дорівнює 180 градусам.
Два суміжних кути утворюють розгорнутий кут.
Якщо два кути рівні, то суміжні з ними кути теж рівні.
Кут, суміжний із прямим кутом, є прямим.
Кут, суміжний з гострим кутом, є тупим.
Кут, суміжний з тупим кутом, є гострим.
Будь-який промінь, що виходить із вершини розгорнутого кута і проходить між його сторонами, поділяє його на два суміжні кути.
Якщо два кути рівні, то суміжні з ними кути також рівні.
Два кути, суміжні з одним і тим же кутом, рівні.
Якщо два суміжні кути рівні, то вони прямі.
Вертикальними називаються два кути, сторони одного з яких є додатковими променями до сторін другого кута.
Вертикальні кути рівні.
При перетині двох прямих утворюються дві пари вертикальних кутів і чотири пари суміжних кутів.
Якщо відомий один із кутів, що утворились при перетині двох прямих, то знайти інші кути можна таким чином: знайти кут, суміжний з даним, враховуючи, що їх сума 180 градусів, після чого знайти кути, вертикальні з відомими, враховуючи, що вертикальні кути рівні.
Запам’ятайте поняття про теорему, аксіому та доведення.
Доведення — міркування про правильність твердження про властивість тієї або іншої геометричної фігури.
Теорема — твердження, яке треба довести.
Аксіома — твердження, що не потребують доведення, і які містяться у формулюваннях основних властивостей найпростіших фігур.
1)Б 2)А 3)В 4)А
Объяснение:
1)Если угол при основании равен 48°, то угол при вершине равен 180°-48°*2=84°. Все углы меньше 90° => треугольник остроугольный.
2) Если два угла равны 25° и 65°, то третий угол равен 180°-25°-65°=90°. Один угол прямой => треугольник прямоугольный.
3) Если сумма двух углов равна 85°, то третий угол равен 180°-85°=95°. Один угол тупой => треугольник тупоугольный.
4) В треугольнике одна сторона в два раза больше двух других => противолежащий этой стороне угол в два раза больше двух других => этот угол прямой => треугольник прямоугольный.