5)УсловиеВ выпуклом четырехугольнике ABCD отрезок, соединяющий середины сторон AB и CD равен 1. Прямые BC и AD перпендикулярны. Найдите отрезок, соединяющий середины диагоналей AC и BD. Скрыть с вершинами в серединах AB, AC, CB и BD - прямоугольник. РешениеПусть K и M - середины сторон соответственно AB и CD четырехугольника ABCD, а N и L - середины его диагоналей соответственно AC и BD. Тогда KLMN - параллелограмм, а т. к. KN || BC, KL || AD и BC AD, то он - прямоугольник. Следовательно, NL = KM = 1. ответ1.
Тетраэдр это многоугольник состоящий из 4 граней, для решения задачи необходимо, чтобы все его рёбра были равны или какое-то ещё дополнительное условие, иначе для решения задачи не хватает данных.
F, O, T - середины ребер BC, DC, AC соответственно. Поэтому FO, OT, TF - средние линии треугольников CBD, CDA, CAB соответственно. А значит, BD=2FO, DA=2OT, AB=2TF.
ΔBDA - равносторонний (все рёбра тетраэдра равны), поэтому BD=DA=AB=24см:3=8см. Найдём площадь равностороннего треугольника по формуле , где a - сторона треугольника.
см².
Площадью боковой поверхности, будет площадь любых 3 граней (все грани это равные, равносторонние треугольники).
Тетраэдр это многоугольник состоящий из 4 граней, для решения задачи необходимо, чтобы все его рёбра были равны или какое-то ещё дополнительное условие, иначе для решения задачи не хватает данных.
F, O, T - середины ребер BC, DC, AC соответственно. Поэтому FO, OT, TF - средние линии треугольников CBD, CDA, CAB соответственно. А значит, BD=2FO, DA=2OT, AB=2TF.
BD+DA+AB = 2FO+2OT+2TF = 2(FO+OT+TF) = 2·12см = 24см.
ΔBDA - равносторонний (все рёбра тетраэдра равны), поэтому BD=DA=AB=24см:3=8см. Найдём площадь равностороннего треугольника по формуле , где a - сторона треугольника.
см².
Площадью боковой поверхности, будет площадь любых 3 граней (все грани это равные, равносторонние треугольники).
S(бок.) = см².
ответ: 48√3 см².