Около треугольника можно описать окружность, притом только одну. Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам. В правильном треугольнике высота является также медианой и биссектрисой. Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис. Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2 Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины. Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R). R= h·2/3 R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2. S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
Объяснение:
12
Если диагональ образует с площадью основания,то диагональ основания равна высоте прямоугольного параллелепипеда.
Найдём диагональ основания по теореме Пифагора:
h=d=13 см
S = 2(a · b + a · h + b · h)=2(12 · 5 + 12 · 13 + 5 · 13) =2(60+156+65) = =2*281=562 см²
V=a · b · h=12 · 5 · 13=780 см³
13
Если образующая конуса наклонена к плоскости основания на 45°,то радиус основания равен высоте.Примем радиус основания за х,тогда по теореме Пифагора:
l²=2r²
12²=2x²
x²=144:2
x²=72
x=√72=6√2 см
S=π r (r + l)=π6√2(6√2+12)=π72+π72√2=π72(1+√2) см²
V=144√2 π см³
Центр описанной окружности треугольника лежит в точке пересечения серединных перпендикуляров к его сторонам.
В правильном треугольнике высота является также медианой и биссектрисой.
Центр описанной окружности правильного трегольника лежит в точке пересечения высот/медиан/биссектрис.
Высоты/медианы/биссектрисы правильного треугольника равны a·√3/2
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.
Расстояние от вершины до точки пересечения медиан правильного треугольника - радиус описанной окружности (R).
R= h·2/3
R= a·√3/2·2/3 = a·√3/3
Площадь круга (S) равна пR^2.
S= п(a·√3/3)^2 <=> S= (п·a^2)/3 <=> a= √(3·S/п)
S= 3п (см^2)
a= √(3·3п/п) <=> a= 3 (см)