а) Если периметры равносторонних треугольников равны, то равны и треугольники. Верное высказывание. Предположим,что периметры равны а сами треугольники нет. тогда периметр перовго равен 3а,а второго 3в . Поскольку периметры равны 3а=3в . Сокращаем на три и получаем,что а=в. Значит наше предположение о возможности неравенства треугольников ошибочно. Равенство периметров равносторонних треугольников доказывает равенство треугольников.
б) Если периметры равнобедренных треугольников равны, то равны и треугольники.- ОШИБОЧНО!
Пусть АВС - прямоуг. равноб. треугольник, где АВ и АС -катеты, и АВ = АС, т. е. угол А - прямой. Из вершины В проведена биссектриса до пересечения с катетом АС в точке Д. Нужно найти соотношение АД и ДС.
Известно, что биссектриса делит противоположную сторону треугольника на части, пропорциональные прилежащим сторонам ( из свойств биссектрисы) .
Значит, АД/ДС = АВ/ВС. Пусть АВ = АС = а . Тогда ВС^2 = а^2 + a^2 = 2a^2 . BC = кв. корень (2a^2) = a*кв. корень (2) .
Тогда АД/ДС = а / ( а*кв. корень (2)) = 1 / кв. корень (2).
Т. е. отрезки катета, разделенные биссектрисой, относятся друг к другу как единица к квадратному корню из двух, считая от прямого угла.
Объяснение:
а) Если периметры равносторонних треугольников равны, то равны и треугольники. Верное высказывание. Предположим,что периметры равны а сами треугольники нет. тогда периметр перовго равен 3а,а второго 3в . Поскольку периметры равны 3а=3в . Сокращаем на три и получаем,что а=в. Значит наше предположение о возможности неравенства треугольников ошибочно. Равенство периметров равносторонних треугольников доказывает равенство треугольников.
б) Если периметры равнобедренных треугольников равны, то равны и треугольники.- ОШИБОЧНО!
Достаточно простого примера. 5+7+7=19 = 3+8+8
периметры равны,а стороны треугольников не равны!
Пусть АВС - прямоуг. равноб. треугольник, где АВ и АС -катеты, и АВ = АС, т. е. угол А - прямой. Из вершины В проведена биссектриса до пересечения с катетом АС в точке Д. Нужно найти соотношение АД и ДС.
Известно, что биссектриса делит противоположную сторону треугольника на части, пропорциональные прилежащим сторонам ( из свойств биссектрисы) .
Значит, АД/ДС = АВ/ВС. Пусть АВ = АС = а . Тогда ВС^2 = а^2 + a^2 = 2a^2 . BC = кв. корень (2a^2) = a*кв. корень (2) .
Тогда АД/ДС = а / ( а*кв. корень (2)) = 1 / кв. корень (2).
Т. е. отрезки катета, разделенные биссектрисой, относятся друг к другу как единица к квадратному корню из двух, считая от прямого угла.
Объяснение: