В равнобедренном треугольнике ABC с основанием АС проведена биссектриса ВД. На отрезке ВД отмечена любая точка К. Докажите равенство треугольников ABK и СВК.
Свойство: "средняя линия отсекает треугольник, подобный исходному с коэффициентом 1/2; его площадь равна одной четвёртой площади исходного треугольника". Следовательно, площадь трапеции
Saefc = Sabc - (1/4)*Sabc = (3/4)*Sabc. Или
Saefc = (3/4)*4√6 = 3√6дм².
Нам дано, что сечение образует с плоскостью угол 45°. Это двугранный угол между плоскостью основания (ABC) и плоскостью сечения (AE1F1C). Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Сечение ВНJ1, где ВН - высота треугольника АВС, а JH - высота трапеции АE1F1C и есть плоскость, перпендикулярная ребру АС двугранного угла. Значит <BHJ1 = 45°.
Площадь сечения AE1F1C - площадь трапеции, отличающейся от трапеции AEFC только высотой (их основания равны: АС - общая, E1F1 = EF, как среднии линии равных треугольников). Высота этой трапеции - это гипотенуза J1Н прямоугольного треугольника JJ1Н и равна J1H1=JH/Cos45° = JH/(√2/2) = JH*2/√2 (так как Cos45 =√2/2 ). Значит и площадь сечения равна
Площадь сечения равна 6√3дм².
Объяснение:
Свойство: "средняя линия отсекает треугольник, подобный исходному с коэффициентом 1/2; его площадь равна одной четвёртой площади исходного треугольника". Следовательно, площадь трапеции
Saefc = Sabc - (1/4)*Sabc = (3/4)*Sabc. Или
Saefc = (3/4)*4√6 = 3√6дм².
Нам дано, что сечение образует с плоскостью угол 45°. Это двугранный угол между плоскостью основания (ABC) и плоскостью сечения (AE1F1C). Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Сечение ВНJ1, где ВН - высота треугольника АВС, а JH - высота трапеции АE1F1C и есть плоскость, перпендикулярная ребру АС двугранного угла. Значит <BHJ1 = 45°.
Площадь сечения AE1F1C - площадь трапеции, отличающейся от трапеции AEFC только высотой (их основания равны: АС - общая, E1F1 = EF, как среднии линии равных треугольников). Высота этой трапеции - это гипотенуза J1Н прямоугольного треугольника JJ1Н и равна J1H1=JH/Cos45° = JH/(√2/2) = JH*2/√2 (так как Cos45 =√2/2 ). Значит и площадь сечения равна
Sae1f1c = Saefc*2/√2 = (3√6)*(2/√2) = 6√3дм²
ответ: площадь сечения равна 6√3дм².
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).