В равнобедренном треугольнике ABC с основанием BC проведена медиана AM. Найдите периметр треугольника ABM, если медиана AM равена 4,1 см, а периметр треугольника ABC равен 34,8 см.
Так как у ромба все стороны равны, то треугольник всд равнобедренный, значит, углы двс и вдс равны, и равны 30°диагонали ромба пересекаются под прямым угломто если рассмотреть треугольник осд, то со лежит напротив угла 30°, значит, катет ос равен половине гипотенузы, то есть 1/2 дса ос половина диагонализначит, ас=сди так как ад=сд(стороны ромба) то и ас=дс=адзначит, периметр 51: 3=17 см (ас, дс, ад) 17 см малая диагональос значит =8,5 смпо теореме пифагора можно найти додо=√(дс^2-ос^2)=√(17*17-8,5*8,5)=√(289-72,25)=√216,75значит, вся диагональ вд=2√216,75квадрат диагонали =4*216,75=867
1) ch3-сh2-> ch3-ch=ch2+ h2 (условия: t, ni)2) ch3-ch=ch2+ > ch3-ch-ch3
|
cl3) ch3-ch-ch3+ koh(> ch3-ch-ch3+ kcl
| |
cl oh
4) 2 ch3-ch-> ch3-ch--o--ch--ch3+ 2h2o (условия: t< 140, h2so4)
| | |
oh ch3 ch3
5) ch3-ch--o--ch--ch3 + > ch3-ch-ch3+ ch3-ch-ch3
| | | |
ch3 ch3 oh i