В равнобедренном треугольнике (АВ=ВС) проведена медиана AD к стороне ВС. Найдите стороны треугольника АВС АВ, ВС, АС, если известно, что АВ+BD=27 см, AC+CD=21 см СОЧ СЕЙЧАС
Прямая BC имеет вид y=bx+c Составим систему уравнений:
Прямая BC описывается уравнением y=-0,2x+8,8 Прямая AD || BC, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку A, параллельную BC y=bx+c 2=-0,2*2+c c=2,4 y=-0,2x+2,4
Проверка:
Прямая AB имеет вид y=bx+c Составим систему уравнений:
Прямая AB описывается уравнением y=3x-4 Прямая CD || AB, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку С, параллельную АВ y=bx+c 10=-6*3+c c=28 y=3x+28
Координаты точки D: -0,2x+2,4=3x+28 3,2x=-25,6 x=-8
y=3*(-8)+28=4
D(-8;4)
По точкам можно построить параллелограмм ABCD и убедиться в правильности решения
Составим систему уравнений:
Прямая BC описывается уравнением
y=-0,2x+8,8
Прямая AD || BC, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку A, параллельную BC
y=bx+c
2=-0,2*2+c
c=2,4
y=-0,2x+2,4
Проверка:
Прямая AB имеет вид y=bx+c
Составим систему уравнений:
Прямая AB описывается уравнением
y=3x-4
Прямая CD || AB, значит коэффициент b у них одинаковый, отличается только коэффициент с. Можем составить уравнение прямой, проходящей через точку С, параллельную АВ
y=bx+c
10=-6*3+c
c=28
y=3x+28
Координаты точки D:
-0,2x+2,4=3x+28
3,2x=-25,6
x=-8
y=3*(-8)+28=4
D(-8;4)
По точкам можно построить параллелограмм ABCD и убедиться в правильности решения
6. Дано: ΔАВС, СР-биссектриса, АР=4 см, ВР=5 см
Найти: Периметр ΔАВС
1. СР- биссектриса ΔАВС => АР:ВР=АС:ВС
4:5=10:ВС
ВС=(5*10):4=12,5 (см)
2. Р(АВС)=АВ+ВС+АС=(АР+ВР)+ВС+АС
Р(АВС)=4+5+12,5+10= 31,5 (см)
ответ: 31,5 см
Объяснение:
7. Позначимо ромба АВСD, АВ = 5см, О - точка перетину діагоналей АС і ВD, АС = 6см. Знайти висоту АК
Розв"язання:
Діагоналі ромба рівні, звідси, АО = СО = АС/2=6/2=3, ВО = ОD
З прямокутного трикутника АВО( кут АОВ = 90 градусів):
За т. Піфагора
Звідси, діагональ ВD = 2ВО = 2*4= 8см.
Знаходимо полщу ромба
Тоді висота ромба дорівнює:
Відповідь: 4.8 см.