Так как A внутри BCD, AB=AD, то BAD - тоже равнобедренный треугольник, и у него общее с BCD основание BD. Поставим точку K так, что BK=KD, тогда KC - медиана BCD, KA - медиана BAD. Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC. Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.
Решение. Треугольник АВС равнобедренный с основанием АС, по свойству углов при основании равнобедренного треугольника
угол ВАС=угол АСВ
СD-биссектриса угла С
по определению биссектриссы
угол АСD=угол BCD
.ADC=150 градусов
значит по свойству смежных углов
угол BDC=180-угол ADC=180-150=30 градусов
Сумма углов треугольника равна 180
Пусть угол В равен х, тогда угол ВАС=угол АСВ=(180-х)\2=90-х\2
угол АСD=угол BCD=1\2угол АСВ=1\2*(90-х\2)=45-х\4
х+45-х\4+30=180
3х\4=180-75
3х\4=105
х=105*4\3=140
ответ: 140 градусов
Докажем второй пункт. Как известно, высота равнобедренного треугольника совпадает с его медианой и биссектрисой и является его осью симметрии. Также, любые два равнобедренных треугольника, построенные на одном основании, обладают общей осью симметрии и, как следствие, общей высотой/медианой/биссектрисой. Тогда получаем, что KA⊂KC и все три точки лежат на KC.
Это автоматически доказывает первый пункт, т.к. непонятные ∠ACB и ∠ACD превращаются в углы при биссектрисе ∠KCB=∠KCD, которые равны между собой.