. В равнобедренном треугольнике АВС медиана, проведенная к боковой стороне, делит высоту, проведённую к основанию ВС, на отрезки, меньший из которых равен 4 см. Найдите длину этой высоты
АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
3)11
Объяснение:
АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.