В равнобедренном треугольнике АВС величина угла вершины угол В=10 градусов.Определи угол основания АС и высотой АМ,проведенной к боковой стороне.угол МАС = ?
Если забыты формулы, решить задачи можно с теоремы синусов. Для радиуса описанной окружности. Разделим пятиугольник на пять равных равнобедренных треугольников, соединив центр окружности с вершинами фигуры. Боковыми сторонами треугольника будут радиусы описанной окружности. Уго при вершине такого треугольника (при центре окружности) равен 360° :5=72° Угол при основании ( стороне пятиугольника) равен ( 180°-72°):2=54°, и этому углу противолежит радиус описанной окружности. По теореме синусов 3:(sin 72°) равно отношению боковой стороны к синусу 54°. Но боковая сторона здесь радиус. Следовательно, 3:(sin 72°)=R:(sin 54°) 3:0,951=R:0,8090 R*0,951=3*0,8090 R=3*0,8090:0,951= ≈2,55 см
Для радиуса вписанной окружности. Разделим пятиугольник на пять равных равнобедренных треугольников. Проведем из центра окружности к стороне пятиугольника ( основанию треугольника) высоту, которая в равнобедренном треугольнике и медиана, и биссектриса и радиус вписанной окружности прятиугольника. Внутренний ( для окружности - центральный) угол такого треугольника равен 360°:5=72° Высота ( биссектриса) делит его на углы по 36°, а равнобедренный треугольник - на два прямоугольных треугольника с меньшим катетом, равным половине стороны пятиугольника и противолежащим углу 36°. Тогда tg (36°)=(3:2):r r=1,5:0,7265= ≈2,06 см
Все задачи стереометрии решаются при планиметрии. Единственное условие: правильно выполненный чертёж. Давай сделаем чертёж вместе. Чертишь плоскость. Над нею бери точку В. Через точку В проводишь прямую, протыкающую плоскость. Под плоскостью на этой прямой отмечаешь точку А. Теперь отмечай точку К. Она на АВ и на плоскости. Через точку К проводи небольшой отрезок в плоскости. Это отрезок KL. Теперь соединяй точки А и L, продолжай дальше над плоскостью. Осталось провести ВС. Надо учесть, что ВС || KL. Получается картинка:Δ АВС, сделанный из плотного картона, проткнул нашу плоскость и прорезал её по KL. Чертёж готов. Теперь смотрим: Δ АВС подобен Δ AKL (по равенству углов) ⇒ВС : KL = AC : AL, 3 : 1 = AC : 12 АС = 3·12 :1 = 36 АС = 36
Для радиуса описанной окружности.
Разделим пятиугольник на пять равных равнобедренных треугольников, соединив центр окружности с вершинами фигуры.
Боковыми сторонами треугольника будут радиусы описанной окружности. Уго при вершине такого треугольника (при центре окружности) равен
360° :5=72°
Угол при основании ( стороне пятиугольника) равен (
180°-72°):2=54°, и этому углу противолежит радиус описанной окружности.
По теореме синусов 3:(sin 72°) равно отношению боковой стороны к синусу 54°.
Но боковая сторона здесь радиус.
Следовательно,
3:(sin 72°)=R:(sin 54°)
3:0,951=R:0,8090
R*0,951=3*0,8090
R=3*0,8090:0,951= ≈2,55 см
Для радиуса вписанной окружности.
Разделим пятиугольник на пять равных равнобедренных треугольников.
Проведем из центра окружности к стороне пятиугольника ( основанию треугольника) высоту, которая в равнобедренном треугольнике и медиана, и биссектриса и радиус вписанной окружности прятиугольника. Внутренний ( для окружности - центральный) угол такого треугольника равен 360°:5=72°
Высота ( биссектриса) делит его на углы по 36°, а равнобедренный треугольник - на два прямоугольных треугольника с меньшим катетом, равным половине стороны пятиугольника и противолежащим углу 36°. Тогда tg (36°)=(3:2):r
r=1,5:0,7265= ≈2,06 см
Давай сделаем чертёж вместе. Чертишь плоскость. Над нею бери точку В. Через точку В проводишь прямую, протыкающую плоскость. Под плоскостью на этой прямой отмечаешь точку А. Теперь отмечай точку К. Она на АВ и на плоскости. Через точку К проводи небольшой отрезок в плоскости. Это отрезок KL. Теперь соединяй точки А и L, продолжай дальше над плоскостью. Осталось провести ВС. Надо учесть, что ВС || KL. Получается картинка:Δ АВС, сделанный из плотного картона, проткнул нашу плоскость и прорезал её по KL.
Чертёж готов. Теперь смотрим: Δ АВС подобен Δ AKL (по равенству углов) ⇒ВС : KL = AC : AL,
3 : 1 = AC : 12
АС = 3·12 :1 = 36
АС = 36