В равнобедренном треугольнике боковая сторона равна 10 дм, основание 16 дм, а высота, проведенная к основанию - 6 дм. Определите: а) синус; b) косинус; 3) тангенс острого угла при основании.
Углы ромба, прилежащие к одной стороне, в сумме равны 180°, следовательно, острый угол ромба равен 180°-120°=60°. Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны. Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой) равны по 60°. Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть сторона ромба= 36:4=9. ответ: меньшая диагональ ромба равна 9.
Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны.
Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой)
равны по 60°.
Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть
сторона ромба= 36:4=9.
ответ: меньшая диагональ ромба равна 9.
Если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны.
Докажем PT||OQ
PT и OQ лежат в параллельных гранях.
Достаточно доказать, что они образуют равные углы с ребрами AB и EF.
FO/BP =FQ/BT =2/4 => △PBT~△OFQ (по двум пропорциональным сторонам и углу между ними)
∠BPT=∠FOQ => PT||OQ
OQ пересекает LK в точке X.
DX пересекает CK в точке Y.
Аналогично докажем PZ||DX
△OFQ~△XKQ => OF/XK =FQ/QK =2/3 => XK/EF =3/5
XL/PB =8/4 =LD/ZB => △XLD~△PBZ
∠BPZ=∠LXD=∠CDX => PZ||DX
PT||OX, PZ||DX => (ZPT)||(DOQ)