( ) В равнобедренном треугольнике DEF с основанием EF=8 см отрезок DK является биссектрисой. Угол DEK равен 36 градусов. Найдите KF, угол EDF, угол DKE.
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 ----------- Центр окружности лежит на АВ, следовательно, АD- диаметр. Проведем радиус ОС . Т.к. С - точка касания, ОС ⊥ АС. Треугольник АОС - прямоугольный. ОС=ОВ=ОD=r, АD:DB=1:2 ⇒ AD=DO=OB=r В прямоугольном треугольнике АСD гипотенуза AO=2 r=2 OC ⇒ sin∠OАС= OС:АО=1/2 ⇒ Угол ОАС=30º,⇒ угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ Больший угол АСВ треугольника АВС равен ∠АСВ=∠АСО+∠ВСО=90º+30º=120º
.
Обозначим АВ=с, ВС=а.
Возведём в квадрат:
Отсюда а*с=36+12=48 (1).
Биссектриса делит сторону АС пропорционально боковым сторонам.
3/с = 4/а
или с = (3/4)*а.
Подставим в уравнение (1):
а*((3/4)*а) = 48
а² =(48*4) / 3 = 64
а = √64 = 8.
с = (3*8) / 4 =6.
Находим радиус окружности, вписанной в треугольник АВС:
Аналогично находим радиус окружности, вписанной в треугольник
ДВС: r₁=1,290994.
Разность r - r₁ = 0,645498.
По теореме косинусов находим величину угла С:
.
С = 0.812756 радиан = 46.56746°.
Центры окружностей с радиусами r и r₁ лежат на биссектрисе угла С.
Тангенс угла С/2 = tg(46.56746 / 2) = tg 23.28373° = 0,43033.
Тогда длина отрезка КМ равна:
КМ = (r-r₁) / tg(C/2) = 0,645498 / 0,43033 = 1,5.
-----------
Центр окружности лежит на АВ, следовательно, АD- диаметр.
Проведем радиус ОС .
Т.к. С - точка касания, ОС ⊥ АС.
Треугольник АОС - прямоугольный.
ОС=ОВ=ОD=r, АD:DB=1:2 ⇒
AD=DO=OB=r
В прямоугольном треугольнике АСD гипотенуза
AO=2 r=2 OC ⇒
sin∠OАС= OС:АО=1/2 ⇒
Угол ОАС=30º,⇒
угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º
Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒
Больший угол АСВ треугольника АВС равен
∠АСВ=∠АСО+∠ВСО=90º+30º=120º