В равнобедренном треугольнике. и есть такие ответы ,,угол при основании может быть острым или прямым" ,,внешний угол при основании не может быть тупым" ,,угол при основании не может быть тупым" ,,угол при вершине не может быть прямым"
Обозначим пирамиду SABCD, В правильной четырехугольной пирамиде основание – квадрат, боковые ребра равны, вершина проецируется в центр основания, т.е. в точку пересечения его диагоналей. Площадь квадрата по одной из формул равна половине произведения его диагоналей. S=d²/2.
Ребро и высота пирамиды образуют угол ASO=30°. Высота перпендикулярна основанию, треугольник AOS, образованный ребром SA, высотой SO и половиной диагонали АО – прямоугольный. АО=SO•tg30° ⇒ 0,5d=5•1/√3, d=10/√3, S=0,5•(10/√3)²= ед. площади.
Объяснение: зная высоту и площадь основания конуса сразу можно найти его объем по формуле: V=⅓×Sосн×h=
=⅓×36π×6=72π(см³)
Найдём радиус окружности, используя формулу обратную формуле площади:
Sосн=πr²
r²=36π÷π=36; r=√36=6см
Радиус и высота конуса образуют прямоугольный треугольник в котором радиус и высота являются катетами а образующая гипотенузой. Этот треугольник равнобедренный, поскольку высота и радиус равны 6см, а в таком треугольнике гипотенуза будет больше катета в √2 больше. Поэтому образующая L=6√2см
Теперь найдём площадь боковой поверхности конуса по формуле:
S=πrL=π×6×6√2=36π√2(см²)
Теперь найдём площадь полной поверхности конуса, зная площадь боковой поверхности и площадь основания:
Обозначим пирамиду SABCD, В правильной четырехугольной пирамиде основание – квадрат, боковые ребра равны, вершина проецируется в центр основания, т.е. в точку пересечения его диагоналей. Площадь квадрата по одной из формул равна половине произведения его диагоналей. S=d²/2.
Ребро и высота пирамиды образуют угол ASO=30°. Высота перпендикулярна основанию, треугольник AOS, образованный ребром SA, высотой SO и половиной диагонали АО – прямоугольный. АО=SO•tg30° ⇒ 0,5d=5•1/√3, d=10/√3, S=0,5•(10/√3)²= ед. площади.
ответ: V=72π(см³); Sпол=271,296см²
Объяснение: зная высоту и площадь основания конуса сразу можно найти его объем по формуле: V=⅓×Sосн×h=
=⅓×36π×6=72π(см³)
Найдём радиус окружности, используя формулу обратную формуле площади:
Sосн=πr²
r²=36π÷π=36; r=√36=6см
Радиус и высота конуса образуют прямоугольный треугольник в котором радиус и высота являются катетами а образующая гипотенузой. Этот треугольник равнобедренный, поскольку высота и радиус равны 6см, а в таком треугольнике гипотенуза будет больше катета в √2 больше. Поэтому образующая L=6√2см
Теперь найдём площадь боковой поверхности конуса по формуле:
S=πrL=π×6×6√2=36π√2(см²)
Теперь найдём площадь полной поверхности конуса, зная площадь боковой поверхности и площадь основания:
Sпол=Sосн+Sбок.пов=36π+36π√2=
=36×3,14+36×3,14×1,4=271,296см²