В равнобедренном треугольнике известно уравнение основания x-2y+3=0, уравнение одной боковой стороны 4x-y+5=0 и точка M(1,2;5,6) на другой боковой стороне. Вычислить координаты центра тяжести. Координаты центра тяжести можно найти если знать координаты трех вершин треугольника. Координаты вершин треугольника можно найти найдя точки пересечения прямых. Последний вопрос как найти уравнение второй стороны? Оно будет таким как у первой тк стороны равны?
Sabcd = 150 см².
Объяснение:
Трапеция АВСD. АС =15 см. ВD = 20 см. СН =12 см.
Проведем СЕ параллельно ВD. Тогда DЕ = ВС, СЕ = ВD, как противоположные стороны параллелограмма.
Площадь треугольника АСЕ равна:
Sace = (1/2)·АЕ·СН.
АE = АD + DЕ = АD + ВС. =>
Sace = (1/2)·(АD + ВС)·СН.
Площадь трапеции равна
Sabcd = (1/2)·(АD + ВС)·СН. (формула).
Значит Sabcd = Sade.
По Пифагору АН = √(АС²-СН²) = √(15²-12²) = 9 см.
НЕ = √(СЕ²-СН²) = √(20²-12²) =16 см.
АЕ = АH + HЕ = 9+16 =25 см.
Sabcd = (1/2)·25·12 = 150 см².
ОПИСКА в условии. Дано решение для измененного условия.
Объяснение:
Условие: В трапеции АВСD, ВС:АD=1:2. Е - середина боковой стороны СВ, точка М лежит на АЕ, так что АМ:МЕ=4:1. Используя векторы, докажите, что точка М лежит на диагонали ВD.
Сначала докажем, что в условии - опечатка. При таком условии (Е - середина боковой стороны СВ) точка М в общем случае не лежит на диагонали BD (приложение 1 и 4).
Итак, АВ║DC, AD = 2BC, ВЕ = ЕС и АМ = 4ЕМ. Это все, что нам известно про трапецию. остальные параметры могут быть взяты произвольно, если они не не противоречат условию задачи. Тогда пусть ВС=5 ед, AD=10ед, DC=3ед, BH=3ед (при СН = 4ед - высота трапеции). При желании мы можем принять ЛЮБЫЕ значения сторон, не противоречащие условию задачи.
Координата Xd - по Пифагору:
Xd = √(AD²-Yd²) = √(10²-4²) = 2√21 ≈ 9,2.
АВ(Xb) = Xd+DC+BH = 9,2+3+3 = 15,2ед.
Xe = 15,2 - 1,5 = 13,7.
Тогда имеем точки: А(0;0), В(15,2;0), Е(13,7;2) и D(9,2;4).
Уравнение прямой ВD: (X-Xb)/(Xd--Xb) = (Y-Yb)/(Yd-Yb) или
(Х-15,2)/(9,2-15,2) = (Y-0)/4 => 2X+3Y = 30,4 (1).
Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/13,7 = (Y-0)/2 => 2X=13,7Y (2).
Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2). Подставим (2) в (1): 13,7Y+3Y = 30,4. => Y ≈ 1,82. => X ≈ 12,5.
Итак, точка М(12,5;1,82).
Теперь разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:
Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:
Xм = (13,7+(0/4))/(5/4) = 10,96. Yм = (2+0)/(5/4) =1,6.
М(10,96;1,6).
Координаты точки М, полученные разными не совпали, следовательно точка М не лежит на прямой DB.
=======================================
Изменим условие:
В трапеции АВСD, ВС:АD = 1:2. Е - середина боковой стороны СD, точка М лежит на АЕ, так что АМ:МЕ=4:1. Используя векторы, докажите, что точка М лежит на диагонали ВD.
Доказательство (приложение 2):
Вектор BD = BC + CD (по правилу сложения).
Вектор МЕ = (1/5)*АЕ (дано).
Вектор АЕ = AD + DE = AD - ED (так как вектор ED = - DE).
Или АЕ = 2*ВС - (1/2)CD.
Тогда вектор МЕ = (1/5)*(2*ВС - (1/2)CD) = (2/5)ВС - СD/10.
Вектор MD = ME + ED = (2/5)ВС - СD/10 +CD/2 или
MD = (2/5)ВС + (2/5)СD = (2/5)*(BC +CD) = (2/5)*BD.
Это доказывает, что вектора BD и MD лежат на одной прямой. Следовательно, точка М лежит на диагонали BD, что и требовалось доказать.
=======================================
Метод координат (приложение 3):
Пусть трапеция АВСD c основаниями AD и ВС. Привяжем систему координат к вершине A так, что вектор AD лежит на оси Х в положительном направлении. Так как из условия нам известно только то, что AD=2*BC и точка Е - середина стороны CD, примем значения сторон трапеции так, что
ВС=5 ед, AD=10ед, DH=3ед (при СН = 4ед - высота трапеции). При желании мы можем принять ЛЮБЫЕ значения сторон, не противоречащие условию задачи.
Тогда имеем точки: А(0;0), В(2;4), Е(8,5;2) и D(10;0).
Уравнение прямой ВD: (X-Xb)/(Xd-Xb) = (Y-Yb)/(Yd-Yb) или
(Х-2)/8 = (Y-4)/(-4) => X+2Y = 10 (1).
Уравнение прямой АE: (X-Xa)/Xe-Xa) = (Y-Ya)/(Ye-Ya) или (Х-0)/8,5 = (Y-0)/(2) => X=4,25Y (2).
Найдем координаты точки М (точки пересечения прямых ЕA и DB, решив систему из уравнений (1) и (2).
Подставим (2) в (1): 4,25Y+2Y = 10. =>
Y = 1,6. => X = 6,8.
Итак, точка М(6,8;1,6).
Разделим отрезок ЕА точкой М в отношении 1:4, считая от точки Е по формулам:
Xм = (Хe+k*Xa)/(1+k); Yм = (Ye+kYa)/(1+k). Получим:
Xм = (8,5+(0/4))/(5/4) = 6,8. Yм = (2+0)/(5/4) =1,6.
М(6,8;1,6).
Координаты точки М, полученные разными совпали, следовательно точка М лежит на прямой DB, что и требовалось доказать.
P.S. В дополнение представлен рисунок, на котором с программы GeoGebra построена трапеция по условию, данному в задании. На нем видно, что точка М1 пересечения прямых BD и АЕ и точка М, делящая отрезок АЕ в отношении 4:1, не совпадают.