В равнобедренном треугольнике KLM, с основания KM проведена медианы LP. От точки P проведены перпендикуляры к двум боковым сторонам, соответственно PA и PB равны друг другу.
Щоб побудувати точку C', у яку перейде точка C внаслідок повороту навколо точки O на кут α=90 градусів, потрібно (дивись рисунок):
а) провести промінь OC;
б) від променя OC відкласти кут COK, що дорівнює куту α у заданому напрямку (за умовою цього завдання – проти годинникової стрілки на кут α=90);
в) на промені OK знайти точку C', яка лежить на відстані OC від центру повороту O. Знайдемо довжини відрізка OC (і відповідно OC'):
Якщо на промені OK від точки O відкласти відрізок |OC'|= √10, то отримаємо координати точки C'(-3;1).
Звичайно, що точно відкласти довжини більшості відрізків не зручно (або неможливо), тому для пошуку координат точки (x';y'), при попороті точки (x;y) на кут α проти годинникової стрілки, зручно використовувати формули:
1. 1) 50: 2 = 25 (- полусумма сторон) 2) пусть х + 5 - большая сторона, тогда х - наименьшая. полусумма равна 25, имеем уравнение: х+х+5=25, отсюда х = 10. 3) итак, наименьшие стороны равны по 10 см, а наибольшие по 15 см.2.30 градусов, в ромбе все стороны равны, и если сторона равна диагонали, то образуется равносторонний треугольник у которого все внутренние углы равны 60 градусов, вторая диагональ есть биссектриса внутреннего угла - делит его пополам3. 0,5*ac=корень (ad в квадрате + (0,5*bd) в квадрате) ac = 2*корень (6 в квадрате + 2,5 в квадрате) = 2*6,5 = 13
Щоб побудувати точку C', у яку перейде точка C внаслідок повороту навколо точки O на кут α=90 градусів, потрібно (дивись рисунок):
а) провести промінь OC;
б) від променя OC відкласти кут COK, що дорівнює куту α у заданому напрямку (за умовою цього завдання – проти годинникової стрілки на кут α=90);
в) на промені OK знайти точку C', яка лежить на відстані OC від центру повороту O. Знайдемо довжини відрізка OC (і відповідно OC'):
Якщо на промені OK від точки O відкласти відрізок |OC'|= √10, то отримаємо координати точки C'(-3;1).
Звичайно, що точно відкласти довжини більшості відрізків не зручно (або неможливо), тому для пошуку координат точки (x';y'), при попороті точки (x;y) на кут α проти годинникової стрілки, зручно використовувати формули:
у нашому випадку, отримаємо
Відповідь: (-3;1) – А.
Объяснение: