В равнобедренном треугольнике МКР с основанием МР проведена бисекртиса КR. На ней взята точка С. Доведите, что треугольник МСR = треугольнику РСR. Если можно с рисунком?
Теорема: перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Согласно теореме о перпендикуляре, опущенном из вершины прямого угла на гипотенузу, составим пропорцию и найдём АВ:
АВ : АС = АС : АD
Откуда (произведение средних равно произведению крайних):
В прямоугольном треугольнике величина угла A составляет 60°. Из вершины угла A проведена биссектриса AD, которая разбивает противоположный катет на отрезки BD и DC.
1. Докажите, что ΔBCA∼ΔBAD.
2. Найдите отношение BD:DС. ответ запишите в виде отношения чисел.
Решение
1.
Докажем, что треугольник ВСА подобен треугольнику BAD (ΔBCA∼ΔBAD).
Согласно первому признаку подобия треугольников: если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
1) В треугольнике ВСА:
∠А = 60° - согласно условию задачи;
∠В = 90° - так как треугольник ВСА является прямоугольным;
∠С = 180 - 90 - 60 = 30°
2) В треугольнике ВАD:
∠В = 90° - так как треугольник ВСА является прямоугольным;
∠DАB = ∠A : 2 = 60 : 2 = 30° - так как, согласно условию задачи, AD является биссектрисой угла А;
∠АDB = 180 - 90 - 30 = 60°/
3) Таким образом, согласно первому признаку подобия треугольников:
ΔBCA∼ΔBAD - что и требовалось доказать
2.
Найдём отношение BD : DС.
1) Так как биссектриса угла А делит противоположную сторону ВС на отрезки ВD и DC, которые пропорциональны соответственно сторонам АВ и АС данного треугольника, то для расчета отношения BD : DС необходимо рассчитать отношение АВ к АС.
2) В треугольнике ВСА катет АВ лежит против угла С = 30 градусам; следовательно, отношение АВ к АС равно:
АВ : АС = 1 : 2.
3) Тогда, согласно теореме о биссектрисе угла треугольника:
75 см
Объяснение:
Теорема: перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гипотенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Согласно теореме о перпендикуляре, опущенном из вершины прямого угла на гипотенузу, составим пропорцию и найдём АВ:
АВ : АС = АС : АD
Откуда (произведение средних равно произведению крайних):
АС² = АВ · АD
АВ = АС² : AD
АВ = 15² : 3 = 225 : 3 = 75 см
ответ: АВ = 75 см
См. Объяснение
Объяснение:
Задание
В прямоугольном треугольнике величина угла A составляет 60°. Из вершины угла A проведена биссектриса AD, которая разбивает противоположный катет на отрезки BD и DC.
1. Докажите, что ΔBCA∼ΔBAD.
2. Найдите отношение BD:DС. ответ запишите в виде отношения чисел.
Решение
1.
Докажем, что треугольник ВСА подобен треугольнику BAD (ΔBCA∼ΔBAD).
Согласно первому признаку подобия треугольников: если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
1) В треугольнике ВСА:
∠А = 60° - согласно условию задачи;
∠В = 90° - так как треугольник ВСА является прямоугольным;
∠С = 180 - 90 - 60 = 30°
2) В треугольнике ВАD:
∠В = 90° - так как треугольник ВСА является прямоугольным;
∠DАB = ∠A : 2 = 60 : 2 = 30° - так как, согласно условию задачи, AD является биссектрисой угла А;
∠АDB = 180 - 90 - 30 = 60°/
3) Таким образом, согласно первому признаку подобия треугольников:
ΔBCA∼ΔBAD - что и требовалось доказать
2.
Найдём отношение BD : DС.
1) Так как биссектриса угла А делит противоположную сторону ВС на отрезки ВD и DC, которые пропорциональны соответственно сторонам АВ и АС данного треугольника, то для расчета отношения BD : DС необходимо рассчитать отношение АВ к АС.
2) В треугольнике ВСА катет АВ лежит против угла С = 30 градусам; следовательно, отношение АВ к АС равно:
АВ : АС = 1 : 2.
3) Тогда, согласно теореме о биссектрисе угла треугольника:
BD : DС = АВ : АС = 1 : 2.
BD : DС = 1 : 2.
ответ: BD : DС = 1 : 2.