Sбок=1/2Росн*L (L-апофема) как я понял:" сторона правильной треугольной пирамиды равна 3 см" - это сторона в основании пирамиды, т.е сторона правильного треугольника.(уточнять надо) значит нам надо найти радиус вписанной окружности. r=(a*3^1/2)/6 (3^1/2 - корень из трех)r= 3^1/2*1/2 (корень из трех делить на два)т.к. из теоремы о трех перпендикуляров радиус вписанной окружности - проекция(наклонная - апофема, высота(пирамиды) - перпендикуляр), то cos45=r/L=>L=r/cos45=(3^1/2*1/2)/2^1/2*1/2=(3^1/2)/2^1/2 (корень из трех делить на корень из двух)P=3+3+3=9Sбок=4.5*(3^1/2)/2^1/2
ответ:Древняя задача.
Объяснение: Полагаю речь идет о разделении угла с линейки без делений и циркуля.
1. На два угол делится просто - надо построить биссектрису.
Строится она легко.
а. Выставить произвольный раствор циркуля
2. Отметить на сторонах угла отрезки, равные раствору циркуля ОА и ОВ.
3. С центром в точках А и В построить дуги, которые пересекаются.
4. Точка О и получившаяся точка пересечения дают луч, который и есть биссектриса.
Древняя задача о делении угла на 3 равных части решается только в некоторых случаях, общего решения не существует.
как я понял:" сторона правильной треугольной пирамиды равна 3 см" - это сторона в основании пирамиды, т.е сторона правильного треугольника.(уточнять надо)
значит нам надо найти радиус вписанной окружности.
r=(a*3^1/2)/6 (3^1/2 - корень из трех)r= 3^1/2*1/2 (корень из трех делить на два)т.к. из теоремы о трех перпендикуляров радиус вписанной окружности - проекция(наклонная - апофема, высота(пирамиды) - перпендикуляр), то cos45=r/L=>L=r/cos45=(3^1/2*1/2)/2^1/2*1/2=(3^1/2)/2^1/2 (корень из трех делить на корень из двух)P=3+3+3=9Sбок=4.5*(3^1/2)/2^1/2