Так как внутри большого квадрата и по длине и по ширине укладывается по два одинаковых квадрата, то их сторона вдвое меньше, чем сторона большого квадрата и равна 2а.
Четвертая фигура квадрат:
Третья фигура представляет собой равнобедренный прямоугольный треугольник с катетами, равными 2а:
В левом верхнем среднем квадрате аналогично большому квадрату располагаются 4 квадрата, сторона которых вдвое меньше, чем сторона среднего квадрата, то есть равна а.
Диагональ квадрата BD делит его прямые углы пополам. Значит, углы АВD и ВDА равны по 45°.
После сгибов треугольник ABE наложится на треугольник GBE.
Поскольку треугольники, совпадающие при наложении, равны, то равны их соответствующие элементы. В частности равны углы ABE и EBG. Но в сумме они дают угол 45°. Значит, каждый из них равен по 22.5°.
Итак, в треугольнике ВЕD известно два угла, а третий угол - искомый. Зная, что сумма углов треугольника равна 180°, найдем угол:
∠BED=180°-∠BDE-∠DBE
∠BED=180°-45°-22.5°=112.5°
Аналогично рассуждая, получим, что угол BFD также равен 112.5°.
Пусть сторона большого квадрата 4а.
Так как внутри большого квадрата и по длине и по ширине укладывается по два одинаковых квадрата, то их сторона вдвое меньше, чем сторона большого квадрата и равна 2а.
Четвертая фигура квадрат:
Третья фигура представляет собой равнобедренный прямоугольный треугольник с катетами, равными 2а:
В левом верхнем среднем квадрате аналогично большому квадрату располагаются 4 квадрата, сторона которых вдвое меньше, чем сторона среднего квадрата, то есть равна а.
Площади первого и второго квадрата:
Итоговая закрашенная площадь:
Площадь большого квадрата:
Доля закрашенной площади:
ответ: 1/2
Диагональ квадрата BD делит его прямые углы пополам. Значит, углы АВD и ВDА равны по 45°.
После сгибов треугольник ABE наложится на треугольник GBE.
Поскольку треугольники, совпадающие при наложении, равны, то равны их соответствующие элементы. В частности равны углы ABE и EBG. Но в сумме они дают угол 45°. Значит, каждый из них равен по 22.5°.
Итак, в треугольнике ВЕD известно два угла, а третий угол - искомый. Зная, что сумма углов треугольника равна 180°, найдем угол:
∠BED=180°-∠BDE-∠DBE
∠BED=180°-45°-22.5°=112.5°
Аналогично рассуждая, получим, что угол BFD также равен 112.5°.
Значит их сумма равна 112.5°+112.5°=225°.
ответ: 225°