В равнобедренном треугольнике с длиной основания 8 cм проведена биссектриса угла ∡ABC. Используя второй признак равенства треугольников, докажи, что отрезок BD является медианой, и определи длину отрезка AD. (картинка ниже)
Рассмотрим треугольники ΔABD и Δ...(треугольник записать в алфавитном порядке);
1. так как прилежащие к основанию углы данного равнобедренного треугольника равны, то ∡ A = ∡... ;
2. так как проведена биссектриса, то ∡... = ∡ CBD;
3. стороны AB=CB у треугольников ΔABD и ΔCBD равны, так как данный ΔABC — ...
По второму признаку равенства треугольников ΔABD и ΔCBD равны. Значит, равны все соответствующие элементы, в том числе стороны AD=CD. А это означает, что отрезок BD является медианой данного треугольника и делит сторону AC пополам.
Объяснение: обозначим прямоугольник АВСД с диагональю АС и перпендикулярно ВН. Обозначим соотношение углов АВН и НВС как 3х и 7х. Зная, что они части прямого угла В, составим уравнение:
3х+7х=90
10х=90
х=90÷10
х=9
Теперь найдём части этих углов, зная х: угол АВН=3×9=27°;
Угол НВС=7×9=63°
Теперь рассмотрим полученный ∆АВН. Он прямоугольный и, зная угол ААН=27° и угол ВНА=90°, найдём угол ВАН: угол ВАН=180-27-90=63°. Рассмотрим ∆АОД. Так как в прямоугольнике диагонали, пересекаясь, делятся пополам, то этот треугольник равнобедренный: сторона АО=ОД и углы при основании равны: угол ОАД=углу ОДА. Так как угол А и угол Д полностью составляют 90°, то угол ОАД=углу ОДА=90-63=27°. Теперь найдём в этом треугольнике угол АОД: 180-27×2=180-54=126° Угол АОД=углуВОС=126°. Зная, что сумма углов в точке О составляет 360°, то сумма двух других острых углов будет составлять: 360-126×2= 360-252=108°
Так как эти углы равны, то искомый угол АОВ=углу СОД=108÷2=54°
Объяснение: обозначим прямоугольник АВСД с диагональю АС и перпендикулярно ВН. Обозначим соотношение углов АВН и НВС как 3х и 7х. Зная, что они части прямого угла В, составим уравнение:
3х+7х=90
10х=90
х=90÷10
х=9
Теперь найдём части этих углов, зная х: угол АВН=3×9=27°;
Угол НВС=7×9=63°
Теперь рассмотрим полученный ∆АВН. Он прямоугольный и, зная угол ААН=27° и угол ВНА=90°, найдём угол ВАН: угол ВАН=180-27-90=63°. Рассмотрим ∆АОД. Так как в прямоугольнике диагонали, пересекаясь, делятся пополам, то этот треугольник равнобедренный: сторона АО=ОД и углы при основании равны: угол ОАД=углу ОДА. Так как угол А и угол Д полностью составляют 90°, то угол ОАД=углу ОДА=90-63=27°. Теперь найдём в этом треугольнике угол АОД: 180-27×2=180-54=126° Угол АОД=углуВОС=126°. Зная, что сумма углов в точке О составляет 360°, то сумма двух других острых углов будет составлять: 360-126×2= 360-252=108°
Так как эти углы равны, то искомый угол АОВ=углу СОД=108÷2=54°
ответ: 54°
Объяснение: обозначим прямоугольник АВСД с диагональю АС и перпендикулярно ВН. Обозначим соотношение углов АВН и НВС как 3х и 7х. Зная, что они части прямого угла В, составим уравнение:
3х+7х=90
10х=90
х=90÷10
х=9
Теперь найдём части этих углов, зная х: угол АВН=3×9=27°;
Угол НВС=7×9=63°
Теперь рассмотрим полученный ∆АВН. Он прямоугольный и, зная угол ААН=27° и угол ВНА=90°, найдём угол ВАН: угол ВАН=180-27-90=63°. Рассмотрим ∆АОД. Так как в прямоугольнике диагонали, пересекаясь, делятся пополам, то этот треугольник равнобедренный: сторона АО=ОД и углы при основании равны: угол ОАД=углу ОДА. Так как угол А и угол Д полностью составляют 90°, то угол ОАД=углу ОДА=90-63=27°. Теперь найдём в этом треугольнике угол АОД: 180-27×2=180-54=126° Угол АОД=углуВОС=126°. Зная, что сумма углов в точке О составляет 360°, то сумма двух других острых углов будет составлять: 360-126×2= 360-252=108°
Так как эти углы равны, то искомый угол АОВ=углу СОД=108÷2=54°
Итак: угол АОВ=углу СОД=54°
ответ: 54°
Объяснение: обозначим прямоугольник АВСД с диагональю АС и перпендикулярно ВН. Обозначим соотношение углов АВН и НВС как 3х и 7х. Зная, что они части прямого угла В, составим уравнение:
3х+7х=90
10х=90
х=90÷10
х=9
Теперь найдём части этих углов, зная х: угол АВН=3×9=27°;
Угол НВС=7×9=63°
Теперь рассмотрим полученный ∆АВН. Он прямоугольный и, зная угол ААН=27° и угол ВНА=90°, найдём угол ВАН: угол ВАН=180-27-90=63°. Рассмотрим ∆АОД. Так как в прямоугольнике диагонали, пересекаясь, делятся пополам, то этот треугольник равнобедренный: сторона АО=ОД и углы при основании равны: угол ОАД=углу ОДА. Так как угол А и угол Д полностью составляют 90°, то угол ОАД=углу ОДА=90-63=27°. Теперь найдём в этом треугольнике угол АОД: 180-27×2=180-54=126° Угол АОД=углуВОС=126°. Зная, что сумма углов в точке О составляет 360°, то сумма двух других острых углов будет составлять: 360-126×2= 360-252=108°
Так как эти углы равны, то искомый угол АОВ=углу СОД=108÷2=54°
Итак: угол АОВ=углу СОД=54°