Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°
ответ: найти сторону радиус описанной окружности периметр и площадь правильного треугольника в который вписали окружность радиуса 3
найдите седьмой член прогрессии,если b1=-25 q=-1/
есть треугольник abc, bm-медиана. найти bm. и есть отрезок от b равный 150 градусов .это
первый член прогрессии равен 11,а знаменатель прогрессии равен 2. найдите сумму пяти первых членов этой
найдите градусы 1 и 2 , если а б параллель
меньший и больший углы прямоугольного треугольника относятся как 2: 5. найдите градусную меру 3 угла
прямая mn является секущей для прямых ав и сd (м€ав,n€сd) угол amn равен 75 при каком значении ушла cnm прямые ав и cd могут быть
найдите сумму пяти первых членов прогрессии, если b5=81 b3=