В равнобедренном треугольнике ВСК основание ВС=4. Начало координат является серединой отрезка ВС, а точка К лежит на отрицательной полуоси ОУ. Высота, проведенная к основанию, равна 5. Выполните чертеж в прямоугольной системе координат. Запишите координаты вершин треугольника ВСК.
Будем рассуждать таким образом:
Пусть нам дана трапеция ABCD, где BC||AD, а угол ABC = углу BCD и они окажутся больше, чем 90 градусов...
Треугольник ABC- равнобедренный и угол BAC= углу BCA;
А диагональ AC является секущей между параллельными линиями BC и AD, значит угол CAD= углу BCA и. конечно же, равен углу ADC, как тогда угол ACD=углу BAC + угол BCA...
И тогда что у нас выходит:
Возьмём неизвестное за ''икс'', т.е. введём переменную:
Пусть угол BAC = x, и тогда угол ACD=2x и угол BCD=3x, а из этого следует и угол ABC=3x
Угол CAD=2x и угол ACD тоже равен 2x
Вообще, мы можем получить, что
3x+3x+2x+2x=360 градусов;
10x=360 => x= 36 градусов;
Ну т. е. угол ABC = углу BCD = 108 градусов;
угол BAD = углу CDA=72 градуса.
Мы определили углы трапеции,
Теперь остаётся записать лишь ответ: 72, 108, 108, 72 - искомые углы.
Задача решена.
Обозначим боковую сторону за х.
Опустим из вершины С верхнего основания трапеции перпендикуляр на нижнее основание, тогда проекция диагонали на основание равно 10 см.
Перенесём верхнее основание "в" в точку Д.
Получим равнобедренный треугольник с основанием, равным а + в, а так как боковые стороны - это диагонали, то сумма их проекций равна 20 см.
То есть а + в = 20 см.
Тогда 2х = 48-20 = 28 см, а х = 28/2 = 14 см.