В равнобедренном треугольнике высота длиной 15 см, проведенная к боковой стороне, делит боковую сторону на отрезки, один из которых, лежащий при
основании треугольника, на 1 см больше другого, считая от основания треугольника.
Найдите основание треугольника.
Линейный угол двугранного угла - это угол, образованный двумя лучами, которые имеют общее начало, лежащее на ребре двугранного угла, и проведенными в обеих гранях перпендикулярно этому ребру.
Обе плоскости сечения содержат в себе диагональ куба А1С, которая является линией их пересечения.
Соотношение линейных величин у кубов одинаковы.
Пусть данный куб единичный, где его ребро равно 1.
Тогда его диагональ А1С по формуле диагонали куба равна √3, а диагональ его грани равна √2.
А1С=√3 А1В=√2
Искомый угол ∠В1КН, где В1К - высота треугольник аА1В1С.
В1Н - перпендикуляр из В1 на плоскость А1СВ, в частности, В1Н перпендикулярен А1В.
Из треугольник аА1В1С найдем В1К.
Треугольники А1В1С и КВ1С подобны.
А1В1:В1К=А1С:В1С
1/В1К=√3/√2
Грани куба - равные квадраты.
Диагонали квадрата перпендикулярны и точкой пересечения делятся пополам.
В1Н ⊥ А1В, ⇒ является половиной диагонали грани куба и равна ( √2):2
В1К ⊥ А1С, НК ⊥ А1С.
Треугольник В1НК - прямоугольный.
cos ∠ НВ1К=В1Н:В1К
cos ∠НВ1К=(√2/2):√2/√3=√3/2, и это косинус угла 30º.
Значит, угол В1КН, как второй острый угол прямоугольного треугольника, равен 90º-30º=60º
2)
а) нет, не могут. Плоскости либо параллельны (и тогда они не имеют общих точек), либо пересекаются по прямой (и тогда имеют бесконечное множество общих точек), либо совпадают (и тоже имеют бесконечное множество общих точек)
б) нет
в) да