В равнобедренной трапеции диагональ перпендикулярна боковой стороне. Найдите площадь трапеции, если большее основание равно 14√3, а один из углов трапеции равен 60градусов.
Так как искомая окружность должна касаться хорды АВ данной нам окружности радиуса R=15 и самой этой окружности, ясно, что искомая окружность расположена внутри кругового сегмента, стягиваемого хордой АВ. Поскольку хорда АВ делит круг на два круговых сегмента, существует и два варианта решения. На рисунке представлены оба варианта расположения искомой окружности. Точка касания "С" этой окружности с хордой АВ определена. Проведем радиус r=O1C искомой окружности в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4. Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ. ОМ=√(АО²-АМ²)=√(15²-12²)=9. В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности. Тогда для первого варианта (окружность расположена в большем секторе): ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем: ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или 225-30r+r²=16+r²-18r+81. Отсюда r=32/3. Для второго варианта (окружность расположена в меньшем секторе): ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.
1) ΔАВС равнобедренный ⇒ высота АН⊥ВС явл. медианой ⇒ ВН=СН=3 По теореме о трёх перпендикулярах ДН⊥ВС ⇒ расстояние от точки Д до ВС = ДН. ΔАВН: АН=√(25-9)=4 ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора) АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2 по теореме о трёх перпенд. НО⊥АС ⇒ искомое расстояние от т. Н до т. О (до АС)= НО. ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2 Середина АВ - точка Е, АЕ=ВЕ=2. Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
На рисунке представлены оба варианта расположения искомой окружности.
Точка касания "С" этой окружности с хордой АВ определена.
Проведем радиус r=O1C искомой окружности в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4.
Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ.
ОМ=√(АО²-АМ²)=√(15²-12²)=9.
В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности.
Тогда для первого варианта (окружность расположена в большем секторе):
ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем:
ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или
225-30r+r²=16+r²-18r+81. Отсюда r=32/3.
Для второго варианта (окружность расположена в меньшем секторе):
ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.
высота АН⊥ВС явл. медианой ⇒ ВН=СН=3
По теореме о трёх перпендикулярах ДН⊥ВС ⇒
расстояние от точки Д до ВС = ДН.
ΔАВН: АН=√(25-9)=4
ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД
АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора)
АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2
по теореме о трёх перпенд. НО⊥АС ⇒
искомое расстояние от т. Н до т. О (до АС)= НО.
ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2
Середина АВ - точка Е, АЕ=ВЕ=2.
Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17