В равнобедренный треугольник вписана окружность с центром О. Периметр треугольника равен 48см, боковая сторона треугольника равна 16см. Найти в каком отношении точка О делит высоту треугольника, проведенную к основанию.
Дано: δ авс ∠с = 90° ак - биссектр. ак = 18 см км = 9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км. рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°. т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30° рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60° искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120° ответ: 120° подробнее - на -
Відповідь:
Строятся оба треугольника в общем, одинаково.
Я нарисую в Пайнте примерный ход построения, но извините, длины сторон и величины углов точно нарисовать не получится.
1) Рисуем горизонтальную линию, на ней ставим точку.
2) Втыкаем в точку циркуль и раствором, равным второй стороне
(НЕ той, напротив которой заданный угол, а другой) делаем засечку.
В 1) задаче это будет c = 6, во 2 задаче это a = 3.
3) Из поставленной первой точки рисуем заданный угол, то есть проводим луч под нужным углом к горизонтальной прямой.
4) Из второй точки (из засечки) рисуем дугу, равную второй стороне.
5) Эта дуга пересекается с лучом, нарисованным в 3) пункте.
Получилась третья точка треугольника.
Всё!
У меня на рисунке получилось 2 решения этой задачи.
Слева заданные отрезки и угол, справа само построение.
Пояснення: