Ну что ж.. . Одну вершину C мы найдем сразу - это точка пересечения наших прямых x+y-4=0 2x+y-1=0 x=-3 y=7 Вторая и третья вершина будут иметь координаты A(a, 4-a) и B(b, 1-2b) Тогда середины сторон AB BC AC будут ((a+b)/2,(5-a-2b)/2) ((b-3)/2, (8-2b)/2) ((a-3)/2, (11-a)/2)
Далее медианы своей точкой пересечения делятся 2 к одному. А точка эта (0,0) То есть если вершина имеет координаты (х, у) , то основание медианы из этой вершины (-x/2,-y/2)
Тогда для С имеем: a+b=3 5-a-2b=-7
b=9 a=-6
То есть B(9,-17) A(-6,10)
Остается написать уравнение прямой AB - это уже просто: 9x+5y+4=0
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Одну вершину C мы найдем сразу - это точка пересечения наших прямых
x+y-4=0
2x+y-1=0
x=-3 y=7
Вторая и третья вершина будут иметь координаты
A(a, 4-a) и B(b, 1-2b)
Тогда середины сторон AB BC AC будут
((a+b)/2,(5-a-2b)/2)
((b-3)/2, (8-2b)/2)
((a-3)/2, (11-a)/2)
Далее медианы своей точкой пересечения делятся 2 к одному. А точка эта (0,0)
То есть если вершина имеет координаты (х, у) , то основание медианы из этой вершины (-x/2,-y/2)
Тогда для С имеем:
a+b=3
5-a-2b=-7
b=9 a=-6
То есть B(9,-17)
A(-6,10)
Остается написать уравнение прямой AB - это уже просто:
9x+5y+4=0
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.