ABCDEF и A₁B₁C₁D₁E₁F₁ основании усеченной пирамиды , а O и O₁
R =AO=BO=CO=DO=EO =FO . R₁ =A₁O₁=B₁O₁=C₁O₁=D₁O₁=E₁O₁ =F₁O₁ . Рассмотрим четырехугольник (прямоугольная трапеция) AA₁O₁O и проведем A₁H ⊥ AO ( H ∈ AO) . AH =R - R₁ =12 см -8 см =4 см AH =AA₁/2 (катет против угла 30° : ∠AA₁H =90° -∠A₁AH =90° -60° =30°) ⇒ AA₁=2AH =8 см. AA₁B₁B равнобедренная трапеция известно AA₁=BB₁= A₁B₁ =8 см , AB =12 см . Высота A₁M этой трапеции и есть апофема. A₁M ⊥ AB ,.B₁N ⊥ AB , AM=BN =(AB -A₁B₁)/2 =(12 см -8 см)/2 =2 см. Из ΔAA₁M : h =A₁M =√(AA₁² - AM²) =√(8² -2²) =√(64 - 4) =√60 =2√15 (см).
Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.
Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .
Приведем классические и важнейшие известные примеры ГМТ.
Пример
Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).
Пример
Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.
Пример
Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.
Пример
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".
Утверждение
ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств
R =AO=BO=CO=DO=EO =FO .
R₁ =A₁O₁=B₁O₁=C₁O₁=D₁O₁=E₁O₁ =F₁O₁ .
Рассмотрим четырехугольник (прямоугольная трапеция) AA₁O₁O и
проведем A₁H ⊥ AO ( H ∈ AO) .
AH =R - R₁ =12 см -8 см =4 см
AH =AA₁/2 (катет против угла 30° : ∠AA₁H =90° -∠A₁AH =90° -60° =30°) ⇒ AA₁=2AH =8 см. AA₁B₁B равнобедренная трапеция известно AA₁=BB₁= A₁B₁ =8 см , AB =12 см . Высота A₁M этой трапеции и есть апофема.
A₁M ⊥ AB ,.B₁N ⊥ AB , AM=BN =(AB -A₁B₁)/2 =(12 см -8 см)/2 =2 см.
Из ΔAA₁M :
h =A₁M =√(AA₁² - AM²) =√(8² -2²) =√(64 - 4) =√60 =2√15 (см).
Объяснение:
Определение
Геометрическим местом точек (сокращенно — ГМТ), обладающих некоторым свойством, называется множество всех точек, которые обладают этим свойством.
Решение задачи на поиск ГМТ должно содержать доказательство того, что все точки множества , указанного в ответе, обладают требуемым свойством, а также наоборот, что все точки, обладающие требуемым свойством, лежат в этом множестве .
Приведем классические и важнейшие известные примеры ГМТ.
Пример
Геометрическое место точек, удаленных от данной точки на заданное положительное расстояние, — окружность (это определение окружности).
Пример
Геометрическое место точек, равноудаленных от данной прямой, — две параллельные прямые.
Пример
Геометрическое место точек, равноудаленных от концов отрезка, — серединный перпендикуляр к отрезку.
Пример
Геометрическое место внутренних точек угла, равноудаленных от его сторон, — биссектриса угла.
Два последних примера будут рассмотрены детально в разделах "Серединный перпендикуляр" и "Биссектриса".
Утверждение
ГМТ, обладающих двумя свойствами, является пересечением двух множеств: ГМТ, обладающих первым свойством, и ГМТ, обладающих, вторых свойств