1. Расстояние от центра окружности до точки, из которой проведены две касательные, делит угол A пополам. Значит угол HAO равен 30 градусам. Проведем радиус от точки O в точку касания окружности с касательной. Радиус, проведенный из центра окружности к точке касания является перпендикуляром к касательной. Получается прямоугольный треугольник HAO. В прямоугольном треугольнике катет, лежащий против угла в 30 градусов половине гипотенузы. OA - гипотенуза
1. Расстояние от центра окружности до точки, из которой проведены две касательные, делит угол A пополам. Значит угол HAO равен 30 градусам. Проведем радиус от точки O в точку касания окружности с касательной. Радиус, проведенный из центра окружности к точке касания является перпендикуляром к касательной. Получается прямоугольный треугольник HAO. В прямоугольном треугольнике катет, лежащий против угла в 30 градусов половине гипотенузы. OA - гипотенуза
OH=1/2*6
OH=3
OH-радиус окружности
ответ:R=3
2.28 градусов
3.7
Ниже
Объяснение:
Секущая – это прямая линия, пересекающая кривую в двух или более точках. (в окружности)
Хорда – прямая, соединяющая две точки кривой линии.
Хорды, находящиеся на одинаковом расстоянии от центра окружности, равны.
Если хорды стягивают равные центральные углы, то они равны.
Если диаметр перпендикулярен хорде, то он проходит через ее середину.
Если вписанные углы опираются на одну хорду, то они равны.
Две дуги равны, если они заключены между двумя равными хордами.
Если пара вписанных углов опирается на одну и ту же хорду, а их вершины лежат по разные стороны хорды, то их сумма составляет 180°.
Для любых двух хорд AB и CD, пересекающихся в точке О, выполняется равенство: AO•OB = CО•OD
Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть:
АВ^2 = AD • AC.