Т.к. <CMN и <HMB - развернутые, то они равны по 180 градусов, тогда <HMC=<NMB=180-140=40 градусов каждый.Т.к. BH и CN - высоты, то <CHM и <MNB равны по 90 градусов каждый. Т.к. сумма градусных мер углов любого треугольника равна 180 градусам, то <HCM=<MBN=180-40-90=50 градусов каждый. Рассмотрим треугольники ANC и HAB, т.к. угол <CAB - общий, CA=AB(т.к. ABC - равнобедренный), <HCM=<MBN=50, то они равны, значит высоты BH и CN равны и AH=AN, тогда если AB=AC и AH=AN, то CH=NB. Если <CNB=<CHB, CN=BH, CH=NB, то треугольники CHB и CNB равны, тогда <HCB=<CBN. Т.к. <HCM=<MBN=50 и <HCB=<CBN, то <MCB=<MBC. Т,к. сумма градусных мер углов любого треугольника равна 180 градусам, то <MCB+<MBC=180-140=40 градусов, а т.к. <MCB=<MBC, то они оба равны по 40:2=20 градусов, значит <ACB=<CBA(т.к. ABC - равнобедренный)=50+20=70 градусов каждый, тогда если сумма градусных мер углов любого треугольника равна 180 градусам, то <CAB=180-70-70=40 градусов. ответ: <ACB=<ABC=70 градусов и <CAB=40 градусов.
1. Да, луч с проходит между сторонами угла ab.
2. ∠bc = 15°. ∠ac = 45°.
Объяснение:
1. В условии описка. Так как точка d не определена, считаем что условие такое:
Может ли луч с проходить между сторонами угла (ab) если 1) угол(ас)= 30 градусов,угол (аb)= 80 градусов, угол(cb) =50 градусов?
Угол ab равен 80 градусов и состоит из двух углов: ас и bc (так как луч с проходит внутри угла ab).
∠ac +∠cb = 30° + 50° = 80° => да, луч "с" проходит между сторонами угла ab.
2. Угол ab равен 60° с состоит из двух углов: ac и bc, при чем
∠ac =∠bc + 30°. Тогда
∠ab = ∠ac + ∠bc = ∠bc+30° + ∠bc = 60°.
2·∠bc = 60°-30°=30°. => ∠bc = 15° => ∠ac = 45°.
ответ: <ACB=<ABC=70 градусов и <CAB=40 градусов.