В равносторонний треугольник со стороной 8 см вписана окружность. Чему равен радиус окружности? (ответ: 3 4 3 . Указание – использовать свойство медиан и теорему Пифагора)
1. Большее основание на 30 больше меньшего. Так как трапеция равнобедренная, эти 30 распределяются по 15 у одной боковой стороны и у другой. 2. Найдём высоту (перпендикуляр, опущенный из вершины меньшего основания на большее). Имеем прямоугольный треугольник, в котором гипотенуза = 39, один катет = 15 (см. пункт 1). Высота = второй катет этого треугольника. 39^2 - 15^2 = 1296 = 36^2 Высота = 36. 3. Теперь имеем прямоугольный треугольник, в котором диагональ трапеции - гипотенуза, высота - один катет, а второй катет = меньшее основание + 15 = 77. 77^2 + 36^2 = 5929 + 1296 = 85^2. Диагональ = 85
Задание: написать уравнение прямой ax+by+c=0, все точки которой находятся на равных расстояниях от точек A(5;2) и B(9;8) .
Геометрическое место точек, равноудалённых от точек А и В, это перпендикуляр к середине отрезка АВ.
Находим координаты точки С - середины отрезка АВ.
С = ((5+9)/2; (2+8)/2) = (7; 5).
Теперь находим уравнение прямой АВ.
Вектор АВ = (9-5; 8-2) = (4; 6). Это направляющий вектор прямой АВ.
У перпендикулярного вектора координаты такие, что скалярное произведение его и вектора прямой равно 0.
Значит, направляющий вектор перпендикуляра равен(-6; 4).
Используем координаты точки С(7; 5)..
ответ: уравнение искомой прямой (х - 7)/(-6) = (у - 5)/4 это в каноническом виде, или в общем виде 2х + 3у - 29 = 0.
2. Найдём высоту (перпендикуляр, опущенный из вершины меньшего основания на большее). Имеем прямоугольный треугольник, в котором гипотенуза = 39, один катет = 15 (см. пункт 1). Высота = второй катет этого треугольника.
39^2 - 15^2 = 1296 = 36^2
Высота = 36.
3. Теперь имеем прямоугольный треугольник, в котором диагональ трапеции - гипотенуза, высота - один катет, а второй катет = меньшее основание + 15 = 77.
77^2 + 36^2 = 5929 + 1296 = 85^2.
Диагональ = 85