1. Дано: угол 2 = угол 1 + 34°; Найти: угол 3. Решение: Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1. Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение: угол 1 + угол 1 + 34° = 180°. Отсюда угол 1 = 73°. Значит, угол 3 = 73°. ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°. Найти: угол А, угол В. Рисунок к задаче - в приложении к ответу. Решение: Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B. Т.к. угол DCB = 37°, то угол B = 37°. Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB. Угол А = 180° - 90° - 37° = 53°. ответ: угол А = 53°, угол В = 37°.
Найти: угол 3.
Решение:
Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1.
Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение:
угол 1 + угол 1 + 34° = 180°.
Отсюда угол 1 = 73°.
Значит, угол 3 = 73°.
ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°.
Найти: угол А, угол В.
Рисунок к задаче - в приложении к ответу.
Решение:
Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B.
Т.к. угол DCB = 37°, то угол B = 37°.
Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB.
Угол А = 180° - 90° - 37° = 53°.
ответ: угол А = 53°, угол В = 37°.
Дано: ABCD - трапеція, ВС||AD, KP - середня лінія, KP= 7 см, ∠А= 25°, ∠D= 65°, ВМ=МС, AN=ND, MN= 3 см.
Знайти: ВС, AD.
Розв'язання.
1) Через точку М, що є серединою сторони ВС, проведемо пряму МЕ||АВ і пряму MF||CD. Е∈AD, F∈AD.
∠BAC=∠MED= 25° (як відповідні кути при ME||AB і січній АЕ)
∠CDF=∠MFA= 65° (як відповідні кути при MF||CD і січній FD)
2) Оскільки ME||AB і BC||AD, то ABME - паралелограм, АЕ=ВМ.
Оскільки MF||CD і BC||AD, то FMCD - паралелограм, MC=FD.
AE=BM, MC=FD, BM=MC => AE=FD => BC=BM+MC= AE+FD => AD=BC+EF.
3) Розглянемо ΔEMF.
∠MED= 25°, ∠MFA= 65° => ∠EMF= 180°–(25°+65°)= 90° (сума всіх кутів трикутника 180°).
Отже, ∠EMF=90° => ΔEMF - прямокутний.
4) Оскільки AN=ND і AE=FD, то EN=NF => MN - медіана ΔEMF.
В прямокутному трикутнику медіана проведена до гіпотенузи дорівнює половині гіпотенузи. Тобто MN=EN=NF= 3 см. Звідси EF=EN+NF=3+3= 6 см.
5) Середня лінія трапеції дорівнює половині суми її основ.
КР= (BC+AD):2;
BC+AD= 2KP.
За умовою КР= 7 см, AD=BC+EF= BC+6.
Тому:
ВС+ВС+6= 14;
2BC= 8;
BC= 4 (см).
Тоді AD=4+6= 10 см.
Відповідь: 4 см, 10 см.
P.S. А все-таки мало Вы дали :)