a²+b²=2(25²+39²) подставляя и решая , получаем, также находим h из первых формул a=34 b=56 h=6
в основании имеем треугольники, являющимися половинами оснований.Эти треугольники будут со сторонами 39,25 и 34 либо 39,25 и 56. Площади их равны (диагонали делят параллелограмм пополам). Находим по формуле Герона их площади (любого треугольника) , она будет = 420. Тогда площадь основания = 420*2=840
Тема: "окружающая среда"
* * * для удобства плоскость (ABCD) обозначаем через Ψ * * *
EABCD - пирамида , основание которой трапеция ABCD ;
AD || BC ; AB =28 ; ∠A =∠B =90° ; ∠D =30° ; | [AB] < [CD] ; [BC] < [AD]
(ABE) ⊥ Ψ и (CBE) ⊥ Ψ ; ∠ ( (CDE) , Ψ ) =∠ ( (ADE) , Ψ ) = 60°
--------------------------
1. Трапеция ABCD ПРЯМОУГОЛЬНАЯ
- - -
(ABE) ⊥ Ψ и (CBE) ⊥ Ψ ⇒ EB ⊥ Ψ
DA⊥ BA ⇒DA ⊥ EA ; ∠EAB =60° линейный угол двугранного угла
EADC ; Построим линейный угол двугранного угла EDCA
Проведем BF ⊥ CD и основание F этого перпендикуляра соединим с вершиной ПИРАМИДЫ E. Получаем ∠EFB = 60° линейный угол двугранного угла EDCA .
* * * ! ΔABE = ΔFBE =Δ BFC = ΔCHD учитывая ∠D =∠BCF =30° * * *
Вычисление площадей боковых граней и т.д. cм приложение
S1=a*h=204 => h=204/a
S2=b*h=336 => h=336/b
значит 204/a=336/b => a=17b/28
по формуле сумм диагоналей и сторон имеем
a²+b²=2(25²+39²)
подставляя и решая , получаем, также находим h из первых формул
a=34
b=56
h=6
в основании имеем треугольники, являющимися половинами оснований.Эти треугольники будут со сторонами 39,25 и 34 либо 39,25 и 56. Площади их равны (диагонали делят параллелограмм пополам). Находим по формуле Герона их площади (любого треугольника) , она будет = 420.
Тогда площадь основания = 420*2=840
V=840*6=5040