Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.
Дано:тр. ABC, BD=DA, BF=FC, DF
Доказать: DF||AC, DF=1/2 AC
Допустим, что DF не параллельна AC . Тогда из середины D стороны AB проведем прямую, параллельную AC, которая пересечет сторону BC не в точке F. Но эта точка по теореме будет также серединой стороны BC. Получилось, что у BC две середины, что невозможно, а поэтому допущение неверно. Следовательно, DF||AC, т.е. средняя линия параллельна третьей стороне.
Возьмем AE=AC, тогда DE - средняя линия и DE||BC (по доказанному) . DFCE — параллелограмм, поэтому DE=EC=1/2 AC(так как AE=EC по построению).
Пусть начало координат в точке А. Тогда А(0;0)
И сторона AB расположена по направлению оси ОХ. Тогда, так как АВ=14, то B(14;0).
Высота СО делит АВ пополам. Значит, С(7;0). И, так как длина этой высоты 20, то С(7;20).
Точка N - Середина стороны СВ. Чтобы найти координаты середины, нужно вычислить среднее арифметическое координат концов отрезка.
N((14+7)/2;(20+0)/2)=N(10.5;10).
Аналогично считаем M:
M((7+0)/2;(20+0)/2)=M(3.5;2.).
Чтобы найти длины медиан, сначала найдём координаты векторов. И, так как AC=BC, то достаточно посчитать только AN.
Чтобы найти координаты вектора, надо от координат конца отнять координаты начала:
AN(10.5-0;10-0)=AN(10.5;10)
Чтобы найти длину вектора, надо посчитать корень из суммы квадратов координат(теорема Пифагора)
|AN|=√(10,5^2+10^2)=√210.25=14.5
Объяснение:
Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.
Дано:тр. ABC, BD=DA, BF=FC, DF
Доказать: DF||AC, DF=1/2 AC
Допустим, что DF не параллельна AC . Тогда из середины D стороны AB проведем прямую, параллельную AC, которая пересечет сторону BC не в точке F. Но эта точка по теореме будет также серединой стороны BC. Получилось, что у BC две середины, что невозможно, а поэтому допущение неверно. Следовательно, DF||AC, т.е. средняя линия параллельна третьей стороне.
Возьмем AE=AC, тогда DE - средняя линия и DE||BC (по доказанному) . DFCE — параллелограмм, поэтому DE=EC=1/2 AC(так как AE=EC по построению).