Случай 1. Пусть данный треугольник называется АВС с высотой ВН=36см.. Тогда АВ=85, а ВС=60 тогда для нахождения площади треугольника АВС найдем 3и стороны треугольников АВН и НВС по теореме Пифагора. AH=√85²-36²=√7225-1296=√5929=77 S(AHВ)=(77*36)/2=1386см² HC=√60²-36²=√3600-1296=√2304=48 S(HCB)=(48*36)/2=864см² следовательно S(ABC)=S(AHB)+S(HCB)=1386см²+864см²=2250см². Случай 2 найдем S(АВС) используя данную высоту и сумму катетов треугольников AHB и HBC которые дадут нам длину основания треугольника ABC найдем S(ABC). AH=√85²-36²=√7225-1296=√5929=77см HC=√60²-36²=√3600-1296=√2304=48см ⇒ AC=AH+HC=48+77=125см. S(ABC)=(AH*AC)/2=(125*36)/2=2250см²
1) Наклонная 13 см, высота 5 см и проекция образуют прямоугольный треугольник. Проекция равна корень(13^2-5^2)= корень(144)=12. Получили на плоскости равнобедренный треугольник, у которого боковые 12 см, и угол между ними 60 градусов. То есть он равносторонний. Расстояние между концами наклонных равно 12 см. 2) Никакой ошибки в задании нет. а) BD перпендикулярен к плоскости, значит, проекция BD на плоскость - это точка В. Проекция треугольника DBC - это отрезок BC длиной 10 см. б) Проведем в ABC высоту BH, она же медиана и биссектриса, потому что ABC равнобедренный. Треугольник ABH прямоугольный, гипотенуза АВ = 12, катет АН = 5. Катет высота ВН = корень(12^2-5^2) = корень(119) Нам надо найти DH. Треугольник BDH тоже прямоугольный, DH - гипотенуза. DH = корень(119+15^2) = корень(344). Если бы АС = 13, то все было бы
Случай 2 найдем S(АВС) используя данную высоту и сумму катетов треугольников AHB и HBC которые дадут нам длину основания треугольника ABC найдем S(ABC). AH=√85²-36²=√7225-1296=√5929=77см HC=√60²-36²=√3600-1296=√2304=48см ⇒ AC=AH+HC=48+77=125см. S(ABC)=(AH*AC)/2=(125*36)/2=2250см²