в шестиугольнике две противоположные стороны параллельны и равны другие пары противоположных сторон параллельны Докажите что три его диагоналей соединяющих противоположные вершины пересекаются в одной точке
Ага, Пифагорова тройка (20, 21, 29). Проверьте сами - сумма квадратов первых 2 равна квадрату третьего.
Итак, в основании пирамиды прямоугольный треугольник с площадью
Sosn =20*21/2 = 210,
и грани пирамиды имеют одинаковый наклон.
Смотрите, чтобы много не считать. Вершина пирамиды проектируется в центр ВПИСАННОЙ окружности. Потому что при равном наклоне граней все апофемы равны (они равны h = H/sin(Ф), Н - высота пирамиды, Ф - двугранный угол между гранью и основанием). Вершина пирамиды равноудалена от сторон основания, значит, И ЕЁ проекция на основание будет равноудалена от сторон основания. То есть - это центр вписанной окружности.
Проекцией апофемы является радиус вписанной окружности r.
Причем апофема (любая) h = r/cos(Ф); Боковая поверхность при одинаковых апофемах вычисляется так
Sb = (1/2)*Р*h;
где Р - периметр основания (это просто сумма площадей всех треугольников-боковых граней),
Sb = (1/2)*P*r/cos(Ф) = Sosn/cos(Ф); Эта формула крайне полезная, но я не уверен, что программе она есть, поэтому просто её вывел по ходу решения.
Итак,
H = r*tg(Ф), в нашем случае H = r; r = (a + b - c)/2 = 6; (могу объяснить, как эта формула получается, если надо, это в прямоугольном треугольнике работает. Но можно и так сосчитать, r = 2*S/P = 420/(20+21+29) = 6;)
Нарисуй чертеж ВМ=МС=а AN=ND=b (это обозничили мы так) треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже. но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)
Ага, Пифагорова тройка (20, 21, 29). Проверьте сами - сумма квадратов первых 2 равна квадрату третьего.
Итак, в основании пирамиды прямоугольный треугольник с площадью
Sosn =20*21/2 = 210,
и грани пирамиды имеют одинаковый наклон.
Смотрите, чтобы много не считать. Вершина пирамиды проектируется в центр ВПИСАННОЙ окружности. Потому что при равном наклоне граней все апофемы равны (они равны h = H/sin(Ф), Н - высота пирамиды, Ф - двугранный угол между гранью и основанием). Вершина пирамиды равноудалена от сторон основания, значит, И ЕЁ проекция на основание будет равноудалена от сторон основания. То есть - это центр вписанной окружности.
Проекцией апофемы является радиус вписанной окружности r.
Причем апофема (любая) h = r/cos(Ф); Боковая поверхность при одинаковых апофемах вычисляется так
Sb = (1/2)*Р*h;
где Р - периметр основания (это просто сумма площадей всех треугольников-боковых граней),
Sb = (1/2)*P*r/cos(Ф) = Sosn/cos(Ф); Эта формула крайне полезная, но я не уверен, что программе она есть, поэтому просто её вывел по ходу решения.
Итак,
H = r*tg(Ф), в нашем случае H = r; r = (a + b - c)/2 = 6; (могу объяснить, как эта формула получается, если надо, это в прямоугольном треугольнике работает. Но можно и так сосчитать, r = 2*S/P = 420/(20+21+29) = 6;)
H = 6; это высота пирамиды
Sosn = 210;
Sb = 210/(корень(2)/2) = 210*корень(2);
Полная поверхность 210*(1 + корень(2));
ВМ=МС=а
AN=ND=b (это обозничили мы так)
треугольники APN и MPB подобны с коэффициентом b/a,и высоты тоже
треуг. NQD и CQM подобны с тем же коэфф b/a и высоты тоже.
но если у треуг. APN и NQD AN=ND, то и высоты равны. Т.е. точки P и Q находятся на одинаковом расстоянии от AD
что и требовалось доказать.
если по поводу высот , что они равны , непонятка, то это следует из того, что отношения высот малого и большого треуг. равно одному и тому же коэффициенту, а сумма этих высот постоянна (высота трапеции)