В системе координат дана точка с координатами (12;12). Определи координаты точки 1, которая получена после выполнения поворота точки вокруг начальной точки координат на угол −270°
Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. ВК=ВД*sin30=12*1/2=6.
Дано :
Четырёхугольник ABCD — трапеция (BC||AD).
Точки М и N — середины АВ и CD соответственно.
MK = 3.
Найти :
ВС = ?
Так как MN соединяет середины боковых сторон трапеции, то MN — средняя линия ABCD (по определению).
Средняя линия трапеции параллельна её основаниям.Следовательно, MN||BC||AD.
Рассмотрим ∆АВС.
МК||ВС (так как МК лежит на MN) и АМ = ВМ (по условию). Тогда по признаку средней линии треугольника МК — средняя линия ∆АВС.
Средняя линия треугольника равна половине стороны, которой она параллельна.Следовательно, ВС = 2МК = 2*3 = 6.
6 (ед).