В системе координат дана точка с координатами P(17;17). Определи координаты точки P1, которая получена после выполнения поворота точки P вокруг начальной точки координат на угол −270°.
Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
180-120=60 - сумма оставшихся углов
Т.к. тр. равнобедренный углы при основании равны, следовательно каждый угол 60\2=30
Высота проведённая в равнобедренном тр. является и медианой и биссектрисой,
следовательно делит основание пополам.
Рассмотрим образовавшийся прямоуг. тр.: По 2 свойству прямоуг. тр.: против угла в 30 градусов лежит катет равный половине гипотинузы. Тогда пусть катет лежащий против угла в 30 градусов будет A, тогда гипотинуза будет 2A.
По т. Пифагора (2A)²=A²+2²
A=√4/3
ответ: √4/3
Объяснение:
Сечение куба B1CD1 - треугольник, т.к. каждая пара его вершин принадлежит одной из граней.
Соответственно и сечение, проходящее через точку К и параллельное плоскости B1CD1 - также треугольник.
Так как его стороны параллельны диагоналям граней куба и проходят через их середины, они равны половине этих диагоналей.
Обозначим сечение МКН. Оно является равносторонним треугольником: МК=КН=МН.
Пусть стороны куба равны а см.
Тогда диагонали граней по формуле диагонали квадрата равны а√2, а стороны сечения МК=(а√2):2
ПлощадЬ правильного треугольника МКН
S=(МК²√3):4
S=(МК²√3):4=√3
S=((а√2):2)²*√3):4=√3
S=(2а²:4)*√3):4=√3
(а²:2)):4=1
а²:8=1
а²=8 - такова площадь одной грани куба.
S полной поверхности куба равна 6а²=8*6=48 см²