В системе координат постройте треугольник А (2;4); В (0;6) и С (1;1). Постройте симметричный: а) КЕХ относительно оси оу, б) NM L относительно начала координат
Дано: в треугольнике АВС проведены медианы AA1=9 и BB1=12,сторона AB =10. Точка пересечения медиан - это точка О.
По свойству медиан АО = (2/3)*9 = 6, ОА1 = 3. ВО = (2/3)*12 = 8, ОВ1 = 4.
По трём сторонам треугольника АВО находим его площадь (формула Герона). Полупериметр р =(10+8+6)/2 = 24/2 = 12. S = √(12*2*4*6) = √(24*24) = 24. Площадь треугольника АВО составляет 1/3 треугольника АВС. Тогда S(АВC) = 3*24 = 72 кв.ед.
По соотношению квадратов сторон треугольника АВО (10² = 8² + 6²) видно, что он прямоугольный. Значит, медианы пересекаются под прямым углом. Отсюда находим стороны: ВС = 2√(8² + 3²) = 2√(64 + 9) = 2√73. АС = 2√(6² + 4²) = 2√(36 + 16) = 2√52. Теперь можно найти длину медианы СС1 по формуле: mc = (1/2)*√(2a² + 2b² - c²). СС1 = (1/2)√(2*292 + 2*208 - 100) = (1/2)*√900 = 15.
Пусть АВСД - данный прямоугольник, точка О - произвольная точка внутри прямоугольника.
Выразим периметр прямоугольника:
Р(АВСД) = (АВ + ВС) * 2 = 24; АВ + ВС = 12.
Проведем четыре перпендикуляра от точки О до сторон прямоугольника:
ОЕ (Е принадлежит ВС), ОМ (М принадлежит СД), ОК (К принадлежит АД и ОР (Р принадлежит АВ).
Сумма расстояний от точки О до сторон прямоугольника будет равна:
ОЕ + ОК + ОМ + ОР.
Так как ОЕ и ОК - два перпендикуляра к параллельным сторонам, проведенные из одной точки, значит, Е и К лежат на одной прямой. Получается, что ЕК параллельно ВС и ЕК = ОЕ + ОК = АВ.
Так как Р и М также являются двумя перпендикулярами в параллельным сторонам, то РМ = ОР + ОМ = ВС.
Точка пересечения медиан - это точка О.
По свойству медиан АО = (2/3)*9 = 6, ОА1 = 3.
ВО = (2/3)*12 = 8, ОВ1 = 4.
По трём сторонам треугольника АВО находим его площадь (формула Герона).
Полупериметр р =(10+8+6)/2 = 24/2 = 12.
S = √(12*2*4*6) = √(24*24) = 24.
Площадь треугольника АВО составляет 1/3 треугольника АВС.
Тогда S(АВC) = 3*24 = 72 кв.ед.
По соотношению квадратов сторон треугольника АВО (10² = 8² + 6²) видно, что он прямоугольный.
Значит, медианы пересекаются под прямым углом.
Отсюда находим стороны:
ВС = 2√(8² + 3²) = 2√(64 + 9) = 2√73.
АС = 2√(6² + 4²) = 2√(36 + 16) = 2√52.
Теперь можно найти длину медианы СС1 по формуле:
mc = (1/2)*√(2a² + 2b² - c²).
СС1 = (1/2)√(2*292 + 2*208 - 100) = (1/2)*√900 = 15.
ответ: 12см
Объяснение:
Пусть АВСД - данный прямоугольник, точка О - произвольная точка внутри прямоугольника.
Выразим периметр прямоугольника:
Р(АВСД) = (АВ + ВС) * 2 = 24; АВ + ВС = 12.
Проведем четыре перпендикуляра от точки О до сторон прямоугольника:
ОЕ (Е принадлежит ВС), ОМ (М принадлежит СД), ОК (К принадлежит АД и ОР (Р принадлежит АВ).
Сумма расстояний от точки О до сторон прямоугольника будет равна:
ОЕ + ОК + ОМ + ОР.
Так как ОЕ и ОК - два перпендикуляра к параллельным сторонам, проведенные из одной точки, значит, Е и К лежат на одной прямой. Получается, что ЕК параллельно ВС и ЕК = ОЕ + ОК = АВ.
Так как Р и М также являются двумя перпендикулярами в параллельным сторонам, то РМ = ОР + ОМ = ВС.
Следовательно, ОЕ + ОК + ОР + ОМ = АВ + ВС = 12 (см).
ответ: сумма расстояний от точки до прямой равно 12 см.