Задача #1
Вопрос 1: Какова производительность завода?
ответ: 560/14 = 40 машин в день
Вопрос 2: За сколько дней завод изготовит 560 машин, если производительность снизится в 2 раза?
ответ: Стандартная производительность была 40 машин в день, логично, что если она снизится в 2 раза, то станет 20 машин в день.
Найдем время, за которое завод изготовит 560 машин (по 20 машин в день): 560/20 = 28 дней
Задача #2
Найдем скорость работы 1-го автомата:
120/20=6 книг в минуту
Найдем скорость работы 2-го автомата:
210/30=7 книг в минуту
Из этого сделаем вывод, что первый автомат работает быстрее
Построено сечение с учётом расположения линий в каждой плоскости.
Длины линий сечения.
AE = √(8² + 4²) = √(64 + 16) = √80 = 4√5.
Длину В1К находим из пропорции (В1К/8 = (8/(8+4)),
отсюда В1К = (8*8)/12 = 16/3.
Тогда ЕК = √(4² + (16/3)²) = √(400/9) = 20/3.
KP = √((8 - (16/3))² + 4²) = √(208/9) = (4/3)√13.
Длину СТ находим из пропорции.
Так как СМ = КС1 = 8 / (16/3) = 8/3, то СМ/СТ = (ВМ/АВ.
Подставим данные. (8/3)/СТ = (8 + (8/3)/8. Получаем СТ = 2.
РТ = √(4² + 2²) = √20 = 2√5.
ДТ = 8 - 2 = 6.
АТ = √(8² + 6²) = 10.
ответ: Р = 4√5 + (20/3) + ((4/3)√13) + (2√5) + 10 =
= 6√5 + (20/3) + ((4/3)√13) + 10.
Задача #1
Вопрос 1: Какова производительность завода?
ответ: 560/14 = 40 машин в день
Вопрос 2: За сколько дней завод изготовит 560 машин, если производительность снизится в 2 раза?
ответ: Стандартная производительность была 40 машин в день, логично, что если она снизится в 2 раза, то станет 20 машин в день.
Найдем время, за которое завод изготовит 560 машин (по 20 машин в день): 560/20 = 28 дней
Задача #2
Найдем скорость работы 1-го автомата:
120/20=6 книг в минуту
Найдем скорость работы 2-го автомата:
210/30=7 книг в минуту
Из этого сделаем вывод, что первый автомат работает быстрее
Построено сечение с учётом расположения линий в каждой плоскости.
Длины линий сечения.
AE = √(8² + 4²) = √(64 + 16) = √80 = 4√5.
Длину В1К находим из пропорции (В1К/8 = (8/(8+4)),
отсюда В1К = (8*8)/12 = 16/3.
Тогда ЕК = √(4² + (16/3)²) = √(400/9) = 20/3.
KP = √((8 - (16/3))² + 4²) = √(208/9) = (4/3)√13.
Длину СТ находим из пропорции.
Так как СМ = КС1 = 8 / (16/3) = 8/3, то СМ/СТ = (ВМ/АВ.
Подставим данные. (8/3)/СТ = (8 + (8/3)/8. Получаем СТ = 2.
РТ = √(4² + 2²) = √20 = 2√5.
ДТ = 8 - 2 = 6.
АТ = √(8² + 6²) = 10.
ответ: Р = 4√5 + (20/3) + ((4/3)√13) + (2√5) + 10 =
= 6√5 + (20/3) + ((4/3)√13) + 10.