* Вокруг любого треугольника можно описать окружность, притом только одну. Её центром будет являться точка пересечения серединных перпендикуляров.
* У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы. Таким образом для построения описанной окружности надо восстановить перпендикуляры к сторонам из их середин, и из точки их пересечения описать окружность. На чертежах - окружности описанные вокруг остроугольного, тупоугольного и прямоугольного треугольников
Если координаты векторов пропорциональны, то векторы коллинеарны, найдем координаты АВ и СД и проверим данное условие.
Над векторами везде надо ставить стрелочки. У меня нет такой возможности. Поэтому не забудьте поставить.
Координаты вектора АВ ищем, вычитая из координат конца т.к. точки В координату начала вектора, т.е. точки А. т.е.
АВ(8;-7;10)
Аналогично СД(-6;-7;-3)
Видно, что координаты не пропорциональны. т.е. не выполняется условие коллинеарности 8/-6=-7/-7=10/-3.
ответ. Векторы не коллинеарны.
* У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.
Таким образом для построения описанной окружности надо восстановить перпендикуляры к сторонам из их середин, и из точки их пересечения описать окружность. На чертежах - окружности описанные вокруг остроугольного, тупоугольного и прямоугольного треугольников