Пусть abc - произвольный треугольник. проведем через вершину b прямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки a и d лежали по разные стороны от прямой bc.углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd.сумма всех трех углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
Знайдемо середини діагоналей чотирикутника
середина діагоналі AС: x=(-3+(-1))/2=-2; y=(-2+6)/2=2
середина діагоналі BD: x=(2+(-6))/2=-2; y=(1+3)/2=2
середини діагоналей даного чотирикутника збігаються, значить він є паралелограмом
По формулі відстані знайдемо довжини сторін чотирикутника ABCD
AB=корінь((2-(-3))^2+(1-(-2))^2)=корінь(25+9)=корінь(34)
BC=корінь((-1-2)^2+(6-1)^2)=корінь(9+25)=корінь(34)
CD=корінь((-6-(-1))^2+(3-6)^2)=корінь(25+9)=корінь(34)
AD=корінь((-6-(-3))^2+(3-(-2))^2)=корінь(9+25)=корінь(34)
сторони даного паралелограма рівні, тому він є ромбом.
По формулі відстані знайдемо довжини діагоналей чотирикутника ABCD
AC=корінь((-1-(-3))^2+(6-(-2))^2)=корінь(4+64)=корінь(68)
BD=корінь((-6-2)^2+(3-1)^2)=корінь(64+4)=корінь(68)
діагоналі даного паралелограма рівні, тому він є прямокутником
даний чотирикутник(паралелограм) є ромбом і прямокутником, тому він квадрат