1) Угол при основании на 13° больше угла при вершине равнобедренного треугольника Сумма углов треугольника X + X + 13° + X + 13° = 180° 3X + 26° = 180° 3X = 154° X = 154°/3 = ° X + 13° = ° + 13° = °
ответ: угол при вершине равен °; углы при основании равны по °
2) Угол при вершине на 13° больше угла при основании равнобедренного треугольника X + X + X + 13° = 180° 3X = 180° - 13° 3X = 167° X = 167°/3 = ° X + 13° = °
ответ: углы при основании равны по ° угол при вершине равен °
Проведем высоту ВН. ΔАВН - прямоугольный, ∠А=60°, тогда ∠АВН=30°, а АН=1\2 АВ=3.
Из ΔАВН найдем ВН
ВН=√(АВ²-АН²)=√(36-9)=√27.
Если основание АД=10, то ВС=10:5=2.
Проведем высоту СК=ВН=√27.
НК=ВС=2. АК=АН+КН=3+2=5; КД=АД=АК=10-5=5.
Найдем АС из ΔАСК. АС²=АК²+СК²=25+27=52. АС=√52=2√13.
Найдем ВД из ΔВДН, где ДН=КН+КД=2+5=7. ВД²=ВН²+ДН²=27+49=76. ВД=√76=2√19.
Найдем ∠СОД по формуле площади трапеции
S=1\2 d₁*d₂*sinα
найдем площадь по формуле S=1\2 (АД+ВС)*ВН=1\2 * (10+2) * √27 = 18√3.
18√3=1\2 * 2√13 * 2√19 * sin∠СОД
18√3=2√247 * sin∠СОД
sin∠СОД=15,6\15,7=0,9936
∠СОД=84°
ответ: 2√13 ед.; 2√19 ед; 84°
1) Угол при основании на 13° больше угла при вершине равнобедренного треугольника
Сумма углов треугольника
X + X + 13° + X + 13° = 180°
3X + 26° = 180°
3X = 154°
X = 154°/3 = °
X + 13° = ° + 13° = °
ответ: угол при вершине равен °;
углы при основании равны по °
2) Угол при вершине на 13° больше угла при основании равнобедренного треугольника
X + X + X + 13° = 180°
3X = 180° - 13°
3X = 167°
X = 167°/3 = °
X + 13° = °
ответ: углы при основании равны по °
угол при вершине равен °