Пусть в треугольнике ABC, сторона AB = c, сторона BC = a, сторона CA = b. Попытаемся доказать, что a/sin(A) = b/sin(B) = c/sin(C). Воспользуемся теоремой о площади треугольника, и запишем её для каждой пары сторон и соответствующего им угла:S = (1/2)*a*b*sin(C),S = (1/2)*b*c*sin(A),S = (1/2)*c*a*sin(B).Так как левые части у первых двух равенств одинаковые, то правые части можно приравнять между собой. Получим (1/2)*a*b*sin(C) = (1/2)*b*c*sin(A). Сократим это равенство на ½*b, получим:a*sin(C) = c*sin(A).По свойству пропорции получаем: a/sin(A) = c/sin(C).Так как левые части у второго и третьего равенств одинаковые, то правые части можно приравнять между собой. Получим (1/2)*b*c*sin(C) = (1/2)*c*a*sin(B). Сократим это равенство на 1/2*c, получим: b*sin(A) = a*sin(B).По свойству пропорции получаем:a/sin(A) = b/sin(B).Объединив полученные два результата получаем: a/sin(A) = b/sin(B) = c/sin(C). Что и требовалось доказать.
Назовём трапецию- ABCD, AD=10 см; BC=6 см; диагональ AC=10 см. Проведём высоту допустим от точки C и назовём полученный отрезок- CH. У нас получается два прямоугольных треугольника: ACH и CDH, но понадобится нам только ACH. Нужно найти сторону AH: провести ещё 1 высоту от точки B: назовём BM. Получается прямоугольник, в котором MH=BC=6 см, HD=AM=(AD-BC)/2=2 см так как трапеция равнобедренная. AH=AD-HD=10-2=8 см. Зная катет AH и гипотенузу AC треугольника ACH, можно найти второй катет CH, который также является высотой трапеции ABCD: CH= см; Площадь трапеции находится по формуле:
Проведём высоту допустим от точки C и назовём полученный отрезок- CH.
У нас получается два прямоугольных треугольника: ACH и CDH, но понадобится нам только ACH.
Нужно найти сторону AH: провести ещё 1 высоту от точки B: назовём BM. Получается прямоугольник, в котором MH=BC=6 см, HD=AM=(AD-BC)/2=2 см
так как трапеция равнобедренная. AH=AD-HD=10-2=8 см.
Зная катет AH и гипотенузу AC треугольника ACH, можно найти второй катет CH, который также является высотой трапеции ABCD:
CH= см;
Площадь трапеции находится по формуле:
ответ:S=48 см в квадрате.