Боковая грань пирамиды, содержащия гипотенузу - равносторонний треугольник. Его сторона по теореме косинусов из равнобедренного треугольника с углом при вершине 120°
a² = 2R² - 2R²cos(120°)
a² = 2R² - 2R²(-1/2)
a² = 3R²
a = R√3
h - медиана треугольника, медианы делятся точкой пересечения в отношении 2 к 1 от угла, значит, высота
h = 3/2*R
Длина гипотенузы a
Катеты основания
a*sin(15)
a*cos(15)
Площадь основания
S = 1/2*a*sin(15)*a*cos(15) = 1/4*a²sin(30) = a²/8
1)
Дана прямая призма ABCDA1B1C1D1.
ABCD-ромб (AB=BC=CD=AD=12). Угол BAD=60 гр, следовательно угол АВС=120.
Проведем прямые BD и B1D1, образующие квадрат.
Расмотрим треугольник ABD - равносторонний, т.к. угол ABD=60 гр (120/2 диагональ ромба является бисс-й). AB=BD=AD=12.
Vпр = S*h
Sосн = AD^2 * sin 60 = 144 * корень из / 2 = 72 корня из 3.
BB1D1D-квадрат. BD=DD1=12. DD1-высота призмы
V=12 * 72 корня из 3 = 864 корня из 3.
2)
Vпр=S*h
S=AD*BK=10*5=50
Рассмотрим треугольник B1BK-прямоугольный.
BB1^2 = B1K^2 - BK^2
BB1=12
V=12*50=600
ответ:Радиус описанной окружности основания r
Гипотенуза основания - диаметр этой окружности
Высота пирамиды опирается на середину гипотенузы
Боковая грань пирамиды, содержащия гипотенузу - равносторонний треугольник. Его сторона по теореме косинусов из равнобедренного треугольника с углом при вершине 120°
a² = 2R² - 2R²cos(120°)
a² = 2R² - 2R²(-1/2)
a² = 3R²
a = R√3
h - медиана треугольника, медианы делятся точкой пересечения в отношении 2 к 1 от угла, значит, высота
h = 3/2*R
Длина гипотенузы a
Катеты основания
a*sin(15)
a*cos(15)
Площадь основания
S = 1/2*a*sin(15)*a*cos(15) = 1/4*a²sin(30) = a²/8
S = 3R²/8
Объём пирамиды
V = 1/3*S*h = R²/8*3/2*R = 3R³/8 см³
V = 3*6³/8 = 3*3³ = 81 см³
Объяснение: